Abstract

I studied and experimented with the idea of building an emulator for the Internet. While there are
various already available options for such a task, none of them takes the emulation of the entire Internet
as an important feature in mind. Those emulators and simulators can handle small-scale networks pretty

well, but lacks the ability to handle large-size networks, mainly due to:

e Not being able to run many nodes, or requires very powerful hardware to do so,
e Lacks convenient ways to build a large emulation, and

e Lacks reusability: once something is built, it is very hard to re-use them in another emulation

I explored, in the context of for-education Internet emulators, different ways to overcome the above
limitations. I came up with a framework that enables one to create emulation using code. The framework
provides basic components of the Internet. Some examples include routers, servers, networks, Internet
exchanges, autonomous systems, and DNS infrastructure. Building emulation with code means it is easy
to build emulation with complex topologies since one can make use of the common control structures
like loops, subroutines, and functions.

The framework exploits the idea of “layers.” The idea of “layers” can be seen as an analogy of the
idea of “layers” in image processing software, in the sense that each layer contains parts of the image (in
this case, part of the emulation), and need to be “rendered” to obtain the resulting image.

There are two types of layers, base layers and service layers. Base layers describe the “base” of the
topologies, like how routers, servers, and networks are connected, how autonomous systems are peered
with each other; service layers describe the high-level services on the Internet. Examples of services
layers are web servers, DNS servers, ethereum nodes, and botnet nodes. No layers are tied to any other
layers, meaning each layer can be individually manipulated, exported, and re-used in another emulation.
One can build an entire DNS infrastructure, complete with root DNS, TLD DNS, and deploy it on any
base layer, even with vastly different underlying topologies.

The result of the rendered layer is a set of data structures that represents the objects in a network
emulation, like host, router, and networks. These representations can then be “compiled” into something
that one can execute using a compiler. The main target platform of the framework is Docker.

The source of the SEEDEMU project is publicly available on Github: https://github.com/seed-

labs/seed-emulator.

SEEDEMU: The SEED Internet Emulator

by
Honghao Zeng
B.S., Computer Science, Syracuse University, 2020

Thesis
Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science.

Syracuse University

December 2021

Copyright (©) Honghao Zeng 2021

All rights reserved

Acknowledgements

Part of the SEEDEMU project is supported by the National Science Foundation (NSF) under grant
number 1718086 and an internal grant from the Syracuse University.

I would like to thank Dr. Wenliang Du for his invaluable supervision, mentorship, and insights on the
SEEDEMU project. I would like to also express my thanks to the following individuals for contributing
to the SEEDEMU project codebase (in alphabetical order):

e Keyi Li: contributed to the initial version of botnet service, tor network service, and ethereum

service.

e Rawi Sader: contributed to serval improvements to the ethereum service.

I would also like to thank my committee members, professor Endadul Hoque, professor Nadeem
Ghani, and professor Roger Chen for serving as my committee members. I would especially like to
express my appreciation to my family and friends for their encouragement and support all through my

studies.

iv

Contents

1 Introduction, background and motivations 1
1.1 The software emulation approach oL 1
1.2 The configuration files approach 2
1.3 Setting the goals e 3
1.4 The programming framework approach 4

2 Related works 5
2.1 NS-3 . o 5
2.2 EVE-NG and GNS3 e 6
2.3 CORE 6
2.4 Greybox e 6
2.5 mini-Interneto e 7

3 Core concepts 7
3.1 Breaking the emulation-building and emulation-running apart 7
3.2 Enabling sharing and re-use of the emulations 10
3.3 The core classes and interfaces L L L 11

3.3.1 TheNodeclass e 12
3.3.2 The Network class and the Interface 12
3.4 The Emulator class e 13
3.5 The object registry L e 14
3.6 Layers s 15
3.6.1 Base layers and service layers L Lo o 15
3.6.2 Virtual nodes, bindings, and configure-on-render 16
3.6.3 The binding system Lo 17
3.7 Rendering e 19
3.7.1 Layer dependencies 20
3.7.2 Layers lifecycle and configure-on-render 20
3.7.3 Rendering flow 22
3.8 Components: sharing emulations Lo o 23
3.8.1 Emulation import and export Lo 23
3.8.2 Component classes 24
3.8.3 Merging emulations 24

4 The
4.1

4.2

4.3

44

5 The
5.1

5.2

base layers 26
The base layer e e 26
4.1.1 Renaming interfaceo 26
4.1.2 Examples oL e e 26
The routing layer oL e 27
4.2.1 Multiple routing tables Lo 28
4.2.2 Direct interfaces 28
4.2.3 The dummy interface and loopback IP 28
4.2.4 The real-world integration Lo 28
425 Exampleso 29
The EBGP layer e 30
4.3.1 How is it done in the real world?o L 30
4.3.2 EBGP in the SEEDEMU framework 33
4.3.3 Multi-table for EBGP 37
4.3.4 Evaluation 37
4.3.5 Examples 38
Internal routing options Lo 38
4.4.1 How is it done in the real world? oL 38
4.4.2 Internal routing in the SEEDEMU framework 40
4.4.3 TheIBGP + OSPF option 41
4.44 The MPLSoption e 43
4.4.5 Evaluation 44
service layers 44
Domain name related services Lo 45
5.1.1 The domain name server service oo 45
5.1.2 The local domain name server service 46
5.1.3 Make traceroute looks better o o oo 47
5.1.4 DNSSEC e 49
Other services L 49
5.2.1 The Ethereum service e 49
5.2.2 The web service L 50
5.2.3 The BGP looking glass service 51
5.2.4 The Botnet services L 51

vi

6 Compilers

6.1 The Docker compiler e
6.1.1 Node compilation L
6.1.2 Network compilation L
6.1.3 Custom Images e

6.2 Other compilers oL
6.2.1 The distributed Docker compiler L Lo
6.2.2 Graphviz Compiler

7 The web Ul

7.1 The UL.
7.1.1 Thestart page e
7.1.2 Node details and quick actions Lo L o
7.1.3 Packet flow visulization oo L
7.1.4 Replay and recording
7.1.5 Nodesearch
7.1.6 Comnsole windows L

7.2 Thebackend
721 The APIserver e
7.2.2 Theworker L

8 Case study

8.1 Simple BGP setup
8.1.1 Import and create required components
8.1.2 Create an Internet exchange L o oL
8.1.3 Create an autonomous Systemo e
8.1.4 Set up BGP peerings
8.1.5 Render and compile the emulation

8.2 Simple transit BGP setup
8.2.1 Import and create required components Lo
8.2.2 Create a transit autonomous systemo
8.2.3 Setup BGP peering
8.2.4 Save the emulation for lateruse o oL

8.3 Create a MPLS-based transit autonomous system
8.3.1 Host system support L
8.3.2 Import and create required components Lo

vii

52
92
o4
o6
o7
o7
o7
98

58
59
59
59
60
61
62
64
64
64
66

8.3.3 Create a transit autonomous system L. 74

8.4 Exploring emulator features with the simple transit BGP setup 75
8.4.1 Allow real-world access to the emulation, 75
8.4.2 Customizing the visualization oL o 77
8.4.3 Components and emulator mergingo 77

8.5 Complex BGP setup 79
8.5.1 The helper tools L 80
8.5.2 Building the topology L 80

8.6 Exploring emulator features on the complex BGP setup 81
8.6.1 BGP hijacks 81
8.6.2 Deploying DNS 83
8.6.3 Deploying anycast L 86

8.7 Developing anew layer Lo 87
8.7.1 Implementing the Layer interface L oo 87
8.7.2 Implementing the Configurable interface 88
8.7.3 Working with the global object registry 88
8.7.4 Working with other layers L o 89
8.7.5 Working with merging Lo 90

8.8 Developing a new Service e 91
8.8.1 Implementing the Server interface 91
8.8.2 Implementing and working with the Service interface 91
8.8.3 Retrieving list of virtual nodes and physical nodes 92
8.8.4 Change render and configuration behavior 0L 92

9 Performance Evaluation 92

9.1 Goals e 93

9.2 Methods e 93
9.2.1 Per-unit performances Lo 94

9.3 Tests o e 95
9.3.1 Large number of autonomous systems L oL 95
9.3.2 Large number of hostso 97
9.3.3 Large number of networks, but small amount of autonomous systems 100
9.3.4 Packet forwarding L 102
9.3.5 Smaller scale tests 105

9.4 Conclusion e 108

viii

10 Summary and future work 110

10.1 Future work L 110
11 Appendix 112
11.1 Perform the evaluation locally L 112
11.1.1 CPU and memory USage v v« v v v v v v e et i e e e e 112

11.1.2 Packet forwarding L 118

11.2 Complete code used in case studies 123

ix

List of Figures

© o0 N O ot ks W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Layer structure L e e 9
Layer lifecycle e e 21
BGP relationships and export filters o oL 34
Structure of the web UL 59
The start page of the web UL o 60
Node details and quick actions L oL 60
Packet flow visualization Lo 61
Replaying packet flowo 62
Replay controls: stopped oL 62
Replay controls: recording 63
Replay controls: playing 63
Search for nodes 63
Comnsole window actions L e 64
Number of ASes vs. memory consumption 96
Number of ASes vs. CPU time 97
Number of ASes vs. CPU time (when memory is sufficient) 98
Number of hosts per AS vs. memory consumed L. 99
Number of hosts per ASvs. CPU time i 99
Number of routers per AS vs. memory consumed 100
Number of routers per ASvs. CPU time 101
Number of IBGP sessions vs. CPU time 102
Number of hops vs. TX/RX speed o it 103
Number of hops vs. RTT 104
Number of streams vs. TX/RX speed 104
Number of streams vs. RTT o 105
Number of ASes vs. memory consumption Lo 106
Number of ASes vs. CPU time 107
Number of hops vs. TX/RX speed 107
Number of hops vs. RTT e 108
Number of streams vs. TX/RX speed 109
Number of streams vs. RTT o 109

Listings

© o0 N O ot ks W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Sample configuration L. 2
Creating and joining an Internet exchange 27
Creating a stub autonomous system L L L 27
Snippet for enabling access to real-worldo L oL 30
Snippet for enabling access toreal-world oo 30
BIRD export filter 35
BGP routing table 36
Create peerings L 38
Creating a DNS infrastructure L o 45
Configuring local DNS o L 47
Cymru query example L 48
Hosting the generated zones 48
mbrresult 48
Creating an Ethereum chain L o 50
Creating a web server L e 50
Creating a looking glass L 51
Creating a botnet L 51
Snippet of docker-compose.yml file Lo oL o 53
Example of Dockerfilefile 55
Node labels 64
Network labels e 65
Importing components e e e 66
Initializing components L Lo e e e e 67
Creating Internet exchange L e 67
Creating autonomous system L e 68
Creating an internal network L oL L 69
Creating arouter L e 69
Creating a host e 69
Installing service on virtual node L Lo 70
Creating binding L 70
Set up BGP peerings e 71
Adding layers to emulator and render them00 71
Using the docker compiler backend o 0oL 71
Create AS150 and its internal networks L. 72

Xi

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Create and connect routers to networks o 73

Configure BGP peers e 73
Dumping the emulation Lo 73
Loading the MPLS module 74
Enabling MPLS on AS150 74
MPLS topology o 74
Traceroute result L 75
tepdump result oL 75
Import OpenVPN remote access provider 76
Use OpenVPN remote access provider e 76
Create the autonomous system oL 76
Create the real-world routero 76
Joining the exchange Lo 76
Setting node/network display name and description. L L. 7
Load dumped emulationo 7
Retrieving layers from emulatoro oL 78
Interactive with the layers L 78
Merge emulations e 79
Create transit L 81
Create stub L e 81
Create real-world AS 81
Allow remote access from the real world 81
Add attacker to the complex BGP setup L. 82
BIRD configuration for hijacking L 83
Creating root SEIvVerso e e e 84
Adding records L. e e 84
Dumping the infrastructure 84
Merging emulations 85
Binding DNS nodes e 85
Binding DNS nodes 85
Set NAme SEIVErs e e e e e e 86
Loading previously built emulation Lo oL 86
Creating the anycast AS ans hosts 86
Creating the routers L 87
Getting objects from the global registry 0oL 89

xii

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Testing object existent in the global registry L. 89
Iterating through all objects in the global registry 89
Iterating through all objects of some type in the global registry 89
Registering new object in the global registry oL 89
Linux ARP table overflow 100
Emulation generator: Large numbers of routers, hosts and/or autonomous systems 113
Driver script: Large numbers of routers, hosts and/or autonomous systems 116
Trick: start only ten containers at a time oL 117
Summary script: Large numbers of routers, hosts and/or autonomous systems 118
Summary script: example output Lo 118
Emulation generator: Large numbers of hops and/or streams 119
Driver: Large numbers of hops and/or streams 121
Summary script: Large numbers of hops and/or streams 122
Summary script: example output Lo 123
Full code for the simple BGP setup example 123
Full code for the simple transit setup example L. 124
Full code for the simple MPLS transit setup example 126
Full code for the real-world example 127
Full code for the complex BGP setup example 128
Full code for DNS infrastructure setup 131
Full code for deploying DNS on complex BGP 131
Full code for the anycast setup 132

xiii

1 Introduction, background and motivations

One can already experiment with small-scale attacks like ARP poisoning, TCP hijacking, and DNS
poisoning since those usually require only a few hosts. However, it is impractical to apply the same
methodology used for small attacks emulation for large-scale networks. A reasonable-sized emulation for
large attack scenarios may require tens of nodes, which computers of regular researchers and students
cannot handle traditional emulation methods like virtual machines.

The final goal was to build a system that allows anyone with a reasonably recent PC to spin up a
reasonably-sized scenario and play with nation-level attacks that are launched against the entire Internet.
This project initially started as an exploration of how to effectively simulate or emulate a large BGP
network in an educational context for students and researchers to experience and experiment with BGP-
related attacks, like BGP hijacks.

This project, the SEEDEMU framework, has reached the set goals. The framework has user-friendly
APITs and ran reasonably large emulation on average PC (Over 100 nodes on a virtual machine with two
virtual CPU cores and 4 GB of memory.) Detailed scalability evaluations are available in the evaluation

section.

1.1 The software emulation approach

The very first approach to this problem was to use software simulation; instead of running actual virtual
machines, one can simulate the behavior of a real machine with pure software. The software I resorted
to is NS-3 [1]. NS-3 is a pure software-based simulator that simulates every aspect of Internet systems.
NS-3 can simulate thousands of nodes on a single physical host given that it has sufficient memory
since nodes in NS-3 are just data structures in the memory. NS-3 also provides a module that allows
interaction with the real world by exchanging ethernet traffics using a Linux TAP interface. NS-3 has
a detailed document for their C++ interface, so users can develop new modules and create simulations
with C++.

T initially implemented the BGP protocol inside NS-3, as there was no useable BGP module available
for NS-3. I followed multiple RFCs to implement a BGP library in C++ and developed a BGP module
for NS-3. While the implementation worked pretty well and was able to interact with the real world, it
soon came to my realization that the performance of the simulation was not very good. The bottleneck
comes from how NS-3 handles the simulation. Note that NS-3 simulates everything in software, from
TCP/IP stack to physical ethernet card behavior like exponential backoff, even physical properties of
RF propagating for the wireless link. For simulation that needs to be realistic, NS-3 is a great fit. The
goal of this project, however, was only to create a realistic-looking network with BGP routers connecting

with each other; layer two and physical NIC behavior are the least of the concerns, yet, NS-3 spent most

of the CPU times doing those works.

NS-3 also abstracts everything that happened in the simulation as events. Some examples of the
events include simulated high-level applications sending TCP packets, IP stack sending ARP requests,
or NIC hardware requesting to send packets to a simulated network media. Each event has a timestamp
and a field that indicates which node it belongs to. One event might create various other events. For
example, sending a “ping” to an unknown local destination will trigger an ARP query, which eventually
triggers a send-packet event on the node’s NIC.

All the events get queued up in the scheduler queue. Then a single-threaded scheduler pops events
out from the queue and executes them. Understandably, NS-3 opts for a single-threaded approach since
the complexity of the events dependencies and handling them in a multithreaded environment would be
non-trivial. While the single-threaded approach mitigates the complex dependency problems, it comes
with a significant performance penalty as only one CPU thread can be used for the entire simulation.

The slow performance is acceptable for NS-3’s intended usage, as many of the researchers using NS-3
do not need the simulation to be run in real-time. In fact, NS-3 defaults to non-real-time simulation
mode. In the non-real-time mode, the NS-3 schedules execute the next event in the queue immediately
after the current one and add the time difference to the simulated clock. When there are only a small
amount of nodes, this runs faster than the real-world time, but it slows down as the number of events
in the simulation increases. The goal of this project is to create a simulator that runs in real-time and
allows real-time human intervention. NS-3’s real-time simulation mode is the best-effort basis, where the
scheduler will try its best to keep up with the real time, or wait if it is faster than the real time, which

does not help in our case since the scheduler is already overloaded.

1.2 The configuration files approach

Since the ns-3 approach is deemed unscalable, I shifted my focus from simulation to emulation. The
target platform for the emulation was LXC containers. Since containers share the same kernel, only
software running on the containers consumes memories. The container itself does not consume much
memory and allows creating bridges for interconnecting containers. However, I soon find myself spending
too much time on managing the containers and creating bridges, which I figure should not be the main
focus of the project. Then I resorted to using docker [7], which has utilities like docker-compose to
allow easy management of containers, networks, and connections. At this stage, it is basically to create
a configuration file that “transpile” to docker-compose configuration file. The configuration file looked

like this:

Listing 1: Sample configuration
networks {
ix100 10.100.0.0/24;
}

router as150_router {
networks {
ix100 10.100.0.150;

}
bird {
router id 10.100.0.150;
protocol kernel {
import none;
export all;
}
protocol device {
}
protocol static {
route 10.150.0.0/24 blackhole;
}
protocol bgp {
import all;
export all;
local 10.100.0.150 as 150;
neighbor 10.100.0.151 as 151;
}
}

While this style of configuration works, it is a bit too verbose and does not scale well. It is verbose
in the sense that it will have a lot of repetitive parts in the configuration to create a complex network.
Furthermore, in order to add new features, for example, to support a new service, one will have to create
a new syntax for the configuration file. One will also need to hard-code IP addresses in the configuration.

It is also hard to work with. Once the configuration file is created, if one wants to add new hosts
or networks to it, they will need some deep understanding of the network that already existed in the
configuration. Since the emulator targets for-education uses, allowing one to quickly make changes to
emulations shared by others is important.

I also later found out that the configuration file approach has already been attempted by another
project, the CORE project [2]. Some more details about the CORE project are in the related work

section.

1.3 Setting the goals

Due to the reasons above, after months spent working with NS-3 and the configuration files, I ended up
dropping the idea of using simulation to archive the goal, or just simply transpile configuration files, and

start to re-evaluate the ultimate goal of the project. The goals were as follows:

e This system must be able to handle a large number of nodes.

e This system must be able to run a reasonably-sized network on a single, average computer. It may

optionally allow the network to run distributedly on multiple computers.
e This system must be run in real-time and allow easy user interaction.

e Users must be able to create a reasonably-sized network easily. Provide trivial ways for users to

create multiple networks and nodes.

e Try to make part of the network re-useable. Users should be able to share and re-use part of

networks or services running on nodes in another network.

e In order to offer high reusability, there should be some mechanism to allow one to merge emulations

with trivial efforts.

e Different parts of the emulation should be able to work independently of each other. If one is only
interested in working with DNS, they should not need to worry about BGP, routing, and layer two

connectivity too much.

1.4 The programming framework approach

With the above goals in mind, I came up with a framework, named SEEDEMU (SEcurity EDucation
EMUlator) framework, that enables one to create emulation using code. The framework provides basic
components of the Internet, like routers, servers, networks, Internet exchanges, autonomous systems,
DNS infrastructure, and a variety of services.

Building emulation with code means it is easy to build emulation with complex topologies and
emulation with a large number of nodes. The framework exploits the idea of “layers.” There are two
types of layers, base layers, and service layers. Base layers describe the “base” of the topologies, like
how routers, servers, and networks are connected, how autonomous systems are peered with each other;
service layers describe the high-level services on the Internet. Examples of services layers are web servers,
DNS servers, ethereum nodes, and botnet nodes. No layers are tied to any other layers, meaning each
layer can be individually manipulated, exported, and re-used in another emulation.

One can build an entire DNS infrastructure, complete with root DNS, TLD DNS, etc., and deploy it
on any base layer, even if the base layers have vastly different underlying topologies. Merging of layers is
also supported, meaning as long as two emulations do not have conflicting nodes or networks with each
other, one can merge them into a single emulation with just one simple APT call.

The framework abstracts the elements of emulation, like physical nodes and networks. When one
tries to build an emulation, they interact with the abstractions only. This allows maximum flexibility in
how the framework can “run” those abstractions in the emulation. The framework can convert the said

abstractions to Docker containers, virtual machines, or even configuration files of other network emulation

and simulation platforms. With that being said, I have chosen to focus on converting the abstractions
to docker containers, as docker offers different ways to deploy containers (locally or distributed across
multiple computers), consumes minimum resources, and has much lower overhead than running real VMs.
Relatively average computers (one with 2 CPU cores, 4 GB of RAMs) can run hundreds of nodes. The
framework also provides APIs for enabling remote access (usually with VPN) to the emulated networks,
meaning users can participate in the emulation as if their computer is inside the emulation.

Also included with the framework is a web-based client program that allows users to view the
topology of the network and access the node’s console directly in the browser. The client program also
allows packet capture with BPF expression and visualizes the path that a packet traverse on the network
topology map. Quick actions like disconnect/reconnect networks, disable/enable BGP peers are also

built-in to the client program, to allow instant change and BGP re-route visualization.

2 Related works

While the project’s goal has been shifted from focusing on how to run the emulation to how to build
the emulation, the project still uses docker as its main emulation platform. There are no other projects
that put the emulation building as their main focus, and therefore this section will cover other emulation
platforms, not other emulation-building frameworks.

Note that since the SEEDEMU framework focuses on building emulations with the core classes and
uses the compiler to compile the core classes into docker compiler, it can, in theory, output simulations
or emulations for any of the platforms listed below. The framework focuses on docker since it is one of
the most mature platforms for managing containers. Given that one understands the target platform’s
configuration format, it will be trivial to create new compilers for the said platform. This offers maximum
flexibility - if some superior emulation platform is available in the future, one can create a compiler for

it, and minimum other code changes are required.

2.1 NS-3

NS-3 is a discrete-event network simulator, targeted primarily for research and educational use [1]. NS-
3 was used in earlier attempts to build the emulator. The motivation section covered the details of
previous attempts. NS-3 also uses programming APIs for building emulation but does not employ the
layer concept, limiting the reusability of emulations.

Another problem with NS-3 is that it is a simulation platform, not an emulation platform. Leave
aside the beforementioned performance issues; to run programs in NS-3, one needs to use NS-3 versions
of the APIs. Since nodes are no longer real machines, system calls, socket APIs, and everything that

has operating system APIs involved needs to be re-written in NS-3’s API to run inside NS-3. NS-3

attempts to solve this issue by providing the Direct Code Execution (DCE) framework, which provides
emulated Linux APIs that programs can use. However, NS-3 implementations of the APIs are not
complete, meaning most of the programs will not be able to run properly under DCE or require major

code changes.

2.2 EVE-NG and GNS3

EVE-NG [4], and Graphical Network Simulator-3, or GNS-3 [5], are two network emulators that use real
virtual machines to do the emulation of networks. While GNS-3 calls itself a simulator, it is, in fact, an
emulator. These two emulators are very similar, with both of them using a graphical user interface to
build emulations. Since the emulations are done by real virtual machines, they can support any kind of
nodes, including commercial router software from vendors like Cisco and Juniper.

While they are perfect for professionals, these emulators do not align with what I want to archive
very well either. The most significant issue is that they both require interacting with a user interface to
build emulation. It is impractical to build large size emulation with a user interface. While one can argue
it is possible to generate a configuration file for them directly, the fact that they run emulations using
virtual machines means each host will consume a significant amount of memory and CPU resources,

making running large emulations impossible without some expensive hardware.

2.3 CORE

Common Open Research Emulator, or CORE, is a tool for emulating networks on one or more machines
[2]. Tt is also a Python-based emulation framework. The major difference is that they are focusing on
running an emulation rather than building emulations. Their primary focus is to construct emulations
with the GUI, but they offer python APIs for building emulation. Their API allows one to create nodes,
create links, and install services on nodes. They do not have the layer concept, and it will be difficult to
re-use emulations, as there are no automated ways to allow easy re-use.

Instead, their main focus is to get the emulation up and running. They manage Linux namespaces
and create containers themselves. If the layers, binding, and merging features are removed from the
SEEDEMU framework, the API provided by SEEDEMU core classes is similar to the CORE APIs. It is
relatively trivial to create a SEEDEMU compiler that targets the CORE platform. However, as docker
is more feature-rich and sophisticated, the main focus of the SEEDEMU framework will be the docker

platform.

2.4 Greybox

CMU greybox is a single-host Internet simulator for offline exercise and training networks. It allows a

single host (physical or VM) to provide the illusion of connectivity to the real Internet: a realistic BGP

backbone topology with point-to-point link delays based on the physical distance between the routers’
real-world locations, combined with TopGen’s application services (HT'TP, DNS, email, and more) [3].

This is, in fact, very similar to what the SEEDEMU framework attempts to do. The differences are:
e The target platform of greybox is limited to CORE, the emulator in the last subsection.

e [t uses configuration to describe emulations instead of building emulations programmatically. For
the reasons stated in the motivations section, while configurations is an acceptable format for saving

the final product of the emulation, it does not offer good portability and reusability.

e The way it runs services on hosts is that only one node runs actual services for all servers in the
emulation. The router nodes merely forward traffic to that one single node. This dramatically
reduces the reality of the emulation and does not align with the goal of for-education emulators
very well. Servers and hosts should be individual nodes. They should be able to work independently

of each other.

e It offers limited options for services.

2.5 mini-Internet

The mini-internet project [6] is a project that also targets classroom and for-education use. It also
uses a configuration file based approach. The main goal of the project is to build a large network
with multiple autonomous systems and internet exchanges to enable students to understand Internet
operations alongside their pitfalls.

The mini-internet project archived its goal pretty well. However, while it is a good fit for experi-
menting with Internet operations, it lacks the ability to host other services, which is another important
part of the for-education Internet emulation. The project is also built using container technology. Its
configuration file is a TSV-like language. While that reduces the verbosity of the syntax significantly, it
also compromises the expressivity of the configuration file.

For the reasons above, existing solutions are not good enough for the goals. These reasons lead to

the development of the SEEDEMU framework.

3 Core concepts

This section will go through the important design concepts and features in the SEEDEMU framework.

3.1 Breaking the emulation-building and emulation-running apart

One of the major differences between the SEEDEMU framework and other network emulators is how

the SEEDEMU framework separates the construction and building of the emulation and the actual

execution of the emulation. This decouples the framework into two major parts: the first part is classes,
components, and layers that interact and make changes to the core classes (Node and Network, which
abstract computer/server/router and network in the real world; will be talked about in details in the
following few paragraphs) to build the emulation, and the second part is the compiler, where core classes
are converted into some other formats understandable by the existing platforms to emulate.

The core classes are simplified representations of the components that one will expect to have in a

network emulator. The core classes are:

e Node: represents a server, a router, or a host on the network. Properties on the Node class include
a list of interfaces, a list of files and their content, a list of software to add to the node, a list of
commands to run when building the image for the node, and a list of commands to run when the

node starts.

e Network: represents a local network or an Internet exchange network. Properties on the network

class include the network prefix on the link, MTU, and a list of interfaces connected to the network.

e Interface: represents a network interface card. An interface connects a node to a network. Prop-

erties on the interface include IP address, packet loss probability, and port speed.

The three classes above are the base of the entire SEEDEMU framework. In fact, these three
components are the base component of most network emulators. In other emulators, like in eve-ng,
one may use the web UI to create and link nodes and networks with each other. In the SEEDEMU
framework, users will be constructing emulations similarly, only that these components are represented
as objects in the framework, and one will interact with them using APIs, instead of dragging cables and
nodes on a Ul Building an emulation with code may not be as easy as point and click using the UL
Building with code, however, provides the most scalability. It would be impractical to create hundreds
of nodes and connect hundreds of different cables using the Ul, but with code that could be just a few
lines of code using loops.

In the SEEDEMU framework, these core class objects are treated as intermediate representations
and are compiled down to the “runnable” emulation. Examples of the “runnable” can be a set of
containers with a docker-compose configuration, some Vagrant virtual machines, some configuration to
deploy contains and virtual machines on a cloud platform, or even configuration files for other network
emulators or simulators. The compilation process is detailed in the later sections.

While one may also create an emulation only using the core classes, like using some other more
traditional network emulators, the intended use of these core classes are to serve as the building blocks
and to be created by the various layers in the emulator. The layered design will be discussed in detail in

the later sections.

Web Service Ethereum i Botnet
Bindings
H BGP layer ” H OSPF layer ”
H Base layer ” H Routing layer ”

Renderer

E Node objects } E Network objects }

Compiler

\

Containers

Virtual machines

other formats...

Figure 1: Layer structure

Figure 1 shows the high-level relationships between layers, core classes, and compilers. For layers,
there are two types: service layer and base layers. Service layers install service onto a single node. They
are rectangles with sharp edges and double borders in the figure. The scope of changes made by a service
layer is generally limited to a single node. Note that service layers do not make changes directly to
the core node classes. Instead, they make changes to “virtual nodes,” and the “virtual nodes” are later
bound to the core “Node‘ class, or a “physical” node. The reason for this will be discussed in the later
sections.

Base layers make changes to the entire emulation. Examples of this are the routing protocols, which
will involve changes on multiple router nodes, and the base layer, which itself creates hosts and routers
in the emulation. The base layers are rectangles with rounded edges and double borders in the figure.
The layers pass through the renderer to be converted to node and network objects. Node and network
objects are the core class objects; they are the single border, rounded edge rectangles in the figure. The
core class objects then pass through the compiler to become the “runnable” emulation.

Note that Figure 1 is only an overview, and therefore, only some available layers are shown. The

SEEDEMU offers many layers to facilitate different needs.

3.2 Enabling sharing and re-use of the emulations

One major consideration when the framework was designed was to enable users to re-use part of the
emulation. Which such a mechanism, one can share with others the emulation they built, or use the
emulations others had built in their own emulation.

In order to support the sharing feature, I came up with the following guidelines:

e Emulations should be separated into different logical parts, where there are no hard-coded depen-
dencies and references between them. Each part should be able to function on its own, without

relying on other parts, during the emulation construction step.

e The emulation parts, either as code or as some dump file, should be imported and exported from

existing emulations easily.

e The emulations parts must be able to merge seamlessly should there be no conflicting definitions in
them. If there are conflicting definitions or configurations, the user should manually resolve such

conflicts, either with code or by interacting at run time with the framework.

In order to support the abovementioned guidelines, the following design decisions and features were

introduced to the framework:

Layered design. The emulations will be built from different components called layers. Consider the

layer as the layer in the image editing software; each layer contains part of the information about the

10

emulation. Examples of layers are the base layer which stores information about what hosts and networks
are in the emulation, what networks they connect to, and more; the BGP layer, which describes how
autonomous systems have peered with each other; and the DNS layer, which stores information about
DNS zones, and what zones are being hosted on what host, etc. Each layer will only “mind their own
business,” in a sense that they only keep track of changes they want to make on the emulation - like
keeping an internal blueprint of the emulation. The changes are only committed to the emulation during

the render stage, where all the layers are “rendered” into one single emulation.

Binding and virtual nodes. As stated in the guideline, no hard-coded dependencies and references
between components (will be called “layers” from now on) are allowed. Layers that install services, like
the DNS layer, however, need to know what node in the emulation (will be called “physical node” from
now on) to commit their internal blueprint on - basically, what physical node to install and configure
the service on. In order to archive this, the binding and virtual node mechanism is introduced. A virtual
node is merely a string, a name text in the layers that would like to make changes to some physical
nodes. These layers track the changes they would like to make to different physical nodes, identified by
the virtual node name, internally. Then, a set of rules can be defined for each virtual node name to map

them onto the physical node.

Merging In order to allow the merging of an existing emulation with another emulation, the merging
feature is introduced. In case there are no common layers shared between two emulations, the merging
process is trivial. However, if two emulations contain the same type of layers, the merging will need some
special attention. Consider the case where there exist two DNS layers with different zones configured in
them. In order to solve this, the framework allows users to implement mergers, where users can request
the emulation to pass two objects of the same type to the user for further merging operations. A set of

default mergers is included with the framework, which will try its best to merge two layers.

3.3 The core classes and interfaces

The core classes are the lowest-level representations of emulation objects. They are the direct abstractions
of the components in the lower-level emulation platforms. For example, the Node class may resemble
a service (i.e., a container in docker) or a virtual machine. The Network class may resemble a Linux
bridge. The Interface may resemble a Linux veth, a SR-IOV NIC, or even a physical NIC. It is up to
the compiler to “compile” them into their final form on the target emulation platform.

For all the core classes, some APIs are provided to allow one to make changes to those objects.
The core classes cannot represent their real-world counterparts fully, and in fact, they never meant to.
Features provided by the core classes are carefully selected to work well under the context of for-education

emulation.

11

3.3.1 The Node class

The node class represents a computer, a server, a router, or any device that has Internet support. In
the SEEDEMU framework, a node is assumed to be a generic Linux host running a Debian-based distro.

The node class has APIs to allow one to do the followings:

e Connect to a network: Connecting to a network or other nodes is the essential feature of a node

that connects to the Internet.

e Adding files to node: There is also API to allow one to add files onto the node. Having this API

enables many emulation features, like adding configuration files onto nodes.

e Add commands to run when “building” the node: In order to make a generic node running Linux
into a node that performs some role in the emulation, one may need to run some commands on
the node. One such example is running commands to install some software. The API to add build

command allows one to customize nodes to have any features they want.

e Add commands to run when the node starts: While adding commands to nodes during build time
allows one to customize the node, it is necessary to have the ability to add commands to run when
a node starts too. For example, on a router node, the routing daemon needs to be started when
the node starts, and on a client node, one may want to make it ping or curl to some other node

when it starts. The API to add start commands is therefore added.

These APIs, while not able to represent the full feature of real-world hosts, have provided enough
customizability that enables the emulation of complex scenarios for education uses. Example usages of
the framework are discussed in the case study section. Note that one may also interact with the nodes
directly after the node starts by accessing the console of the node directly. Therefore, it is not strictly
necessary to add everything one wants to run as start commands. Since the node is just a regular host
running Linux, one may also make changes to it that are not provided by the API. It is even possible to
have real-world computers join the emulation and appear to be a node in the emulation. These features

are discussed in the later sections.

3.3.2 The Network class and the Interface

The network class represents an Ethernet network. It can be considered as a switch, where nodes can
connect to. A network can be an Internet exchange, a part of some backbone, or just an internal LAN
network. On the network class, there is one API to allow one to enable remote access from the real world
to the network, usually by means of hosting a VPN server that is accessible from the real world. Details

of the real-world feature are in the real-world section.

12

An interface object connects a node to the network. The interface class has the APIs to allow one

to do the followings:

e Change MTU: More and more real-world Internet providers allows the use of the jumbo frame.
Having the API to set MTU allows the framework to handle those aspects of the Internet. Some
SEEDEMU features, like the MPLS layer, use this API, since they introduce layer two header

overhead.

e Set link emulation properties: There are APIs on the interface class to allow one to change the
link properties. These properties include link speed, packet drop probability, and max bandwidth.

This provides another important aspect of real-world networks.

e Setting the “direct” attribute: Networks that have “direct” attributes are learned by the routing
daemons and sent to BGP peers. Details of this design are described in the base layer and routing

section.

Again, the goals of these APIs are only to provide enough customizations, so it matches with
the previously set goals - for-education network emulation. And, even if some customizations are not

available, one can always enter the console of the nodes and perform the customizations manually.

3.4 The Emulator class

The Emulator class houses the core services one may need to work with building the emulation.

e Hooks: The emulator class provides hooks. Hooks allow one to hook onto various stages during
the rendering process to make changes to the emulation. The hook feature allows one to make

changes to the layer’s behavior without modifying the layer implementation.

e Bindings: Bindings allow one to bind virtual nodes to physical nodes. Virtual nodes are nodes
used in service layers to keep track of services to install and the configuration files. Virtual nodes
are bound to physical nodes during render. This decouples node references and allows service layers

to operate on their own without base layers. Details about bindings are in the binding section.

e Virtual physical node: When a virtual node is created, one may want to make some additional
changes to the physical node that it is about to bound to. However, the physical node may not
even exist yet. The virtual physical node allows one to make changes to a real physical node object.
The changes made to that virtual physical node are then copied to the actual physical node upon

binding. Details about virtual nodes are in the virtual node section.

e The object registry: The object registry is where all objects in the emulation are stored: layers,
nodes, networks, hooks, and everything. One emulator class has only one object registry, storing

all objects in the emulation.

13

e Merging: The emulator class has a merge method to allow one to merge an emulation with another
to create a new emulation. This allows one to re-use emulations built by others. Details about the

merging feature are in the components section.

¢ Dumping and loading emulations: Dumping allows one to serialize the entire emulation into
a single binary file for easy sharing. Loading loads serialize the single binary file back into an
emulator object. Generally, this is used with the merging feature to share and re-use emulations.

Details about the dump and load feature are in the merging section.

e Service Network: A service network is a special network that has access to the real-world
Internet. The implementation of the service network depends on the compiler; the API merely
creates a network with a special type telling the compiler that this network is not an emulated
network, but is a network that should have access to the real-world Internet. This is used to support
various import features like VPN access for real-world hosts to connect to the emulated network
from the outside world, and NAT access for the hosts inside emulation to access the real-world

Internet. Details about the service network and service node are in the real-world section.

e Rendering and resolving layer dependencies: Naturally, one would want the base layers to
finish configuring the emulation before other layers since no node exists before the base layer does
the configurations. The emulator class automatically learns and checks the dependencies of the
layers. The rendering logic is also handled by the emulator class. Details about rendering logic are

discussed in the rendering section.

3.5 The object registry

The object registry is a class to store objects in the emulations. All objects, including the core classes,
layers, hooks, and bindings, are stored in the registry. Every object registered in the registry will have
three keys to identify them. Namely, the scope, type, and name. Generally, the scope defines the owner
of the said object, the type defines the type of the object, and the name defines the name of the object.
For example, a router named routerO node belongs to AS150 will have a scope, type, and name value
of 150, rnode (router node), and routero.

Some objects registered in the registry will also have their own equivalent of the name, type, or scope
field as their class attribute or method. For example, node objects have ASN attribute, which is also
used as its scope, node role attribute, which corresponds to the type, and name attribute, will be used as
its name. Those equivalent attributes are maintained by the object itself, so in theory, those attributes
can be different from how they are registered in the registry. However, all objects created by layers or

other bulletin emulation functions will keep the attributes on the object itself and the attribute used

14

for the registry the same. Unless one builds an emulation without using layers and explicitly registers

objects in an odd way, the attribute will be consistent.

3.6 Layers

The layer is one of the most critical concepts and components in the SEEDEMU framework. The different
functionality of the emulator is separated into different layers. The base layer, for example, describes

the base of the emulation:

e what autonomous systems and Internet exchanges are in the emulator,
e what nodes and networks are in each of the autonomous systems,

e how nodes are connected with networks

BGP layer, on the other hand, describes how autonomous systems and where are peered with each
other, and what is the relationship between the peers.

Layers themselves are like helper tools to create and make changes like installing new software, or
adding configuration files for the said software, on the core class objects (the intermediate representa-
tions). While one can technically create an emulation without using any of the layers and by manually
creating and updating the core class objects themselves, just like in any other network emulation software
and framework, the layer is one of the most important features that make the SEEDEMU framework

different.

3.6.1 Base layers and service layers

The SEEDEMU framework classifies layers into two different categories. The first category is the base
layers, and the second category is the service layers.

Base layers, not to be confused with the base layer, which is one of the base layers, make changes to
the emulation as a whole. A base layer makes changes to the entire emulation (like BGP, which configure
peeing across multiple different autonomous systems, exchanges, and routers), and routing, which will
configure routing protocols, loopback addresses on all router nodes. The characteristic of base layers is
that they provide the basics to support the emulation and higher-level layers.

In contrast, service layers will typically only make changes to individual nodes. Examples of service
layers are the web service layer, which allows one to install web servers on nodes, and the DNS layer,
which allows users to host DNS zones on nodes. While the service layer is the type of layer that interacts
with a single node to install service on them instead of making changes to the entire emulation as a
whole, service layers can also have their internal “global” state. For example, the DNS layer keeps an

internal tree structure for DNS zones. Individual zones can be hosted on a single server (node-specific

15

data), but the zone structure itself is an “global” data of the DNS layer. The DNS layer uses the zone
tree to build appropriate NS records to aid the creation of the complete DNS chain, enabling one to

build a DNS infrastructure easily.

Design changes in different iterations In the early iteration of the SEEDEMU framework, services
are installed by providing the node object to the services. This leads to one major problem. Referencing
other objects in the emulation means that it would not work if one were to use this same piece of code in
another emulation. This contradicts the early guideline, where each emulation component should have
no direct code dependencies on other codes for portability. Two new mechanisms, namely the virtual
node and binding mechanism, are introduced to solve this problem.

In this new design, layers must not directly reference objects that do not belong to themselves.
Instead, layers retrieve nodes from the registry, using the names and install services that way. It soon
finds that this design still has some downsides. One will have to know the names of objects in the other
layers for this to work, which is less than ideal, as one may get the lower layers from someone else and
may not have the details, like names of objects, that exist in the lower layers. One approach to this
problem is to have the users inspect the imported layers themselves to find out the said details. Such an
approach, however, still does not offer a seamless experience for users. This leads to the development of

the virtual node and binding system.

3.6.2 Virtual nodes, bindings, and configure-on-render

Three new mechanisms, namely the virtual node, binding, and configure-on-render mechanism, are in-
troduced to further increase the portability. The general idea is that, first, the layer must not use any
node object to identify which node to install the services on, as that creates dependencies to the base
layer, as mentioned in the previous paragraph, and second, specifying the name of nodes in the lower

layers should not be the only way users can use to install service on a node.

Virtual node. As explained in the earlier section, the virtual node is the mechanism to enable services
to track changes they would like to make to a node. This virtual node name is only significant to the

service.

Binding. A binding allows one to set how the virtual node gets bound to a physical node, using a set
of optional predicates, like ASN, IP, name, network prefix, of the node. Users may also supply their
functions to do the tests to elect a physical node for a virtual node. It is also entirely optional for set
predicates. If no predicates are given, the virtual node will be bound to a random available physical
node. Alternatively, should no physical nodes match the given predicates, the user can ask the binding

system to create a node that matches the given conditions. This enables one without any knowledge

16

about the lower layers to add new services with trivial efforts.

Virtual physical node. A virtual physical node is an actual node object instance. Since the virtual
nodes are only bound to a physical node after the render process, if a user would like to make some
changes to that physical node, they would need to wait after the render process. Waiting, however, may
not always be an option. If a user is developing a component (a partial emulation that can be “plugged”
into another bigger emulation to form a full emulation; will be discussed in detail in the later sections.),
they would never have the chance to render the emulation themselves. In order to enable making changes
to physical nodes, in this case, the framework offers a “virtual physical node” mechanism. The virtual
physical node provides a way for users to interact with the physical node by creating an actual physical
node object. Users can make changes to this imaginary physical node (with some limitations. Adding
new network interface cards, for example, are not supported.). The emulator will keep track of those

changes and apply the changes to the real physical node when the binding happens.

Configure-on-render. In order to take the portability one step further, the configure-on-render mech-
anism is introduced. This means layers will keep track of changes they planned to make internally and
only actually commit those changes during the render stage. This further allows layers to operate on
their own. With this mechanism, users can do operations like building services and configuring BGP

peerings without the base layer. The design of this mechanism will be discussed in the later sections.

3.6.3 The binding system

Services are installed onto the virtual nodes. Virtual nodes are just a name that exists only inside the
service layers. The binding system is the system that allows one to “bind” a virtual node onto the
physical node, so the service can actually be installed onto the node. A binding consists of the binding

target, the binding filters, and the binding action.

Binding target Binding targets define the “target” virtual nodes of this binding. It can either be the
full name of the virtual node or a regular expression to test the name of the virtual node. The binding
will further evaluate virtual nodes that match the target. Otherwise, the binding system will skip to
the next binding in the bindings list. By offering the option to use regular expressions, one can match
multiple virtual nodes and apply the same binding rules to them. This is found to be extremely useful
when deploying some services. For example, one can prefix all virtual nodes with web services with web-,
and match all those nodes with a single binding using web-.* as the target. While the binding targets

may match multiple virtual nodes, each node is bound individually by evaluating the filters and actions.

17

Binding filters Binding filters allow one to define a set of rules that the physical node must match in
order to be considered a binding candidate for the virtual node. SEEDEMU framework offers some of

the most commonly used predicates in the binding filters:

e asn: The asn option allows one to narrow down physical nodes by their autonomous system

number. Useful if one wants their service to be deployed in a given autonomous system.
e ip: The ip option allows one to match against the IP address of the node.

e prefix: The prefix option allows one to match against the IP address on nodes using a prefix.
The prefix does not have to match the prefix on the interface of the node. As long as the prefix

given in the filter includes the node’s IP address, the node will be considered a candidate.

e nodeName: The nodeName options allow one to match against the physical node name. In different
autonomous systems, physical nodes can have the same name. So if one created nodes name web
in different autonomous systems and wants to host web services in all those autonomous systems,

they can use the node name option.

e custom: The custom options allow one to do their own matching. The options accept a function,
the virtual node name and the physical node object will be passed into the function, and the
function can return True to make the physical node a candidate. This allows one to have complete

control over the filtering process.

e bound: The bound option tells the filter to also consider the physical nodes that already have a
virtual node bound to them as a candidate. By default, this option is False, meaning only physical
node that has not been bound will be considered. However, sometimes it may be useful to install
multiple services on the same node, given that they do not conflict with each other, and thus this

option.

With the default values above, if no rules are given, then that means all physical nodes that have
not been bound to virtual nodes are considered a candidate. This default means if one does not care
where their service will end up at, and simply want the service to be deployed, they can create a binding
that matches all virtual nodes (target = *, with an empty filter). This enables one to deploy services on
to emulation without knowing the underlying topology at all.

If multiple predicates are given, the physical node must match all of them in order to be considered

a candidate.

Binding actions Binding action allows one to set what action to take to select the physical node to

use from the list of candidates. There are four types of actions:

18

First: uses the first candidate.

Random: pick randomly in the list.

Last: pick the last candidate.

New: The new action is, in fact, a special action. When one uses the new action, instead of selecting
nodes from existing physical nodes using the given filter, the binding system tries to create a new

physical node that matches the filter options.

Dynamically created nodes When one uses the “new” action in the filter, the binding system will
try to create a new physical node matching the given condition. This is useful when one wants to deploy
their services on an emulation that already has other services running. In such a case, there may not be
enough free physical nodes for installing the service. For example, when action new is used without any
filter options, the binding system will pick a random autonomous system, have the node join a random
internal network, give it a random name, and use that node for the virtual node. If an IP address is
given, it will try to find the network that includes the given IP addresses and create a new physical node
in that network. However, the binding system will fail if the rules given cannot be satisfied without
creating a new autonomous system or new network. The binding system can only create new nodes and

nothing else.

3.7 Rendering

Rendering is the process where the “magic” happens. In the rendering stage, the render and configure
methods on each layer are called based on the order of their dependencies. The reason to have two stages
(render and configure) for render will be discussed later. The Emulator object, which allows the layers
to obtain information about the layer, is passed to the render and configure methods to allow layers to
make changes to the emulator and build the emulation scenario collaboratively.

In order to build the emulation, the layers need to work with each other by creating new and making
changes to the core classes objects in the global object registry and sharing other layers the details that
may be useful to the emulation building adding metadata to global object registry.

However, some layers need to be configured and rendered so that the other layer can easily work
with the emulator. For example, for the BGP layer to configure peering of the autonomous system across
an Internet exchange or a cross-connect connection, the base layer must have first created the router
nodes in those two autonomous systems and the network for the Internet exchange or cross-connect.

Intuitively, this issue is named layer dependencies.

19

3.7.1 Layer dependencies

In order to solve the issue of layer dependencies, the layer provides four different types of dependencies

configurations:

Forward dependencies. The forward dependencies are the most common dependencies. For example,
nearly all layers have a forward dependency on the base layer. Since if no nodes register in the emulation,

there is nothing a layer can work on.

Inverse dependencies. The inverse dependencies are the dependencies where a layer wants to ensure
the other layer to be rendered after itself, but that target layer may not know the existent of the said layer
creating this dependency. Moreover, since there is no way to register new dependencies after the layer is
created, the inverse-dependencies mechanism is introduced to allow a layer to add itself as a dependency
of another layer. An example use of the inverse-dependencies mechanism is the zone-generating layers.
Zone-generating layers, as their name suggested, generate DNS zones. They allow users to add descriptive
reverse DNS hostnames to IP addresses in the emulation. The zone-generating layers need to be rendered
before the DNS layer finalizes its zone and generates the zone file output to the DNS server nodes since
making changes are not allowed after the render stage (this will be discussed in the layer lifecycle section

below).

Optional forward and optional inverse dependencies. Another case of dependencies is the op-
tional dependencies. A layer may want another layer to be rendered before or after itself but also want to
allow the render and configuration process to continue even if the said layer does not exist. The optional
dependency is a less common use case. An example of optional dependencies is the MPLS layer. MPLS
declares itself to be the optional inverse dependency of the IBGP and OSPF layers. This is because the
MPLS layer replaces the job of both layers, and MPLS needs to ensure IBGP and OSPF layer does not
interfere with an MPLS-enabled autonomous system by masking the autonomous system from IBGP

and OSPF layer.

3.7.2 Layers lifecycle and configure-on-render

One major mechanism of the SEEDEMU framework is the configure-on-render behavior, also known as
the lazy-create policy. The core class objects are not created or modified unless the user initiates a render
call. This ensures that layers will not have access to other emulator components prior to the render,
eliminating antipattern designs from the root.

The rendering process is broken into two parts. Namely, render and configure.

Layers will have no knowledge of what or how other layers are configured prior to the render stage.

Therefore, layers must keep track of the changes they try to make internally within the class. The process

20

Layer created

- J

User calling methods on the layer class

Layer ready

Renderer calling the configure method

Layer configured

Renderer calling the render method

{ Layer finalized }

Figure 2: Layer lifecycle

of actually making changes, like adding nodes, networks, peering configurations, or other features like
DNS, web server, and more, into the emulation, is called rendering.

During the render stage, the render method of each layer will be called in order of their depen-
dencies, and the Emulator object will be passed in. The Emulator object allows the different layers to
collaboratively build a single emulation by providing access to other objects in the emulation.

Configuration is an optional step. In the configuration stage, layers will also be provided with access
to the Emulator object. The configuration stage allows the layer developer to have more control over
the emulation construction. During the configure stage, layers can register the data that other layers
might need. For example, the base layer registers the nodes, networks and resolves all pending network
joins. Layers, however, are designed to not make final changes during the configure stage, as there are
chances that other layers will add new data to the emulator. The configuration stage is especially useful
if a layer wants to make changes to another layer but still requires the other layer to have configured the
emulator first. Currently, this is used in the ReverseDomainName and CymruIpOrigin service, both of
which create a new zone in the DomainName service. They do so in the configure stage, as DomainName
would have already compiled the Zone data structure to zone files in the render stage, and additional
zone added after the render stage will not be included in the final output.

One important reason to use the configure-on-render mechanism is that it forces the layer developer
to not reference any object outside its class, by names of by references, before the render. This means
layers can be easily taken out of their current context and put into another emulation. This also allows
layers to operate solely on their own - the object it references does not need to exist at the emulation
construction time. As long as the object exists during the render stage, the layer will work just fine.

Another important point to know is that the configure-on-render mechanism does not forbid making

changes to layers after the render finishes; it merely suggests that layers must accept changes prior to the

21

render finishes. Having such guidelines simplifies the work for both the layer developers and the layer
users. With such guidelines, the layer developers know when they can safely finalize the layer, and users
also know that if they were to make changes prior to the render, the layers would note the changes. The

full lifecycle and flow of the layers are shown in Figure 2.

3.7.3 Rendering flow

Function Render ():
ResolveBindings();

if HasUnresolvedBindings() then

/* Error out. */
return 1;

end

/* Stage 1: configure all layers. */

for layer in layers do
| Configurelayer (layer);

end
/* Stage 2: render all layers. */
for layer in layers do
| RenderLayer (layer);
end
/* Recursively configure a layer and its dependencies. */

Function ConfigureLayer (layer):
if IsConfigured(layer) then

| continue;
end
for dep in layer.dependencies do

| ConfigurelLayer(dep);
end
InvokePreConfigueHooksFor (layer);
layer.Configure (emulator);
InvokePostConfigueHooksFor (layer);
/* Recursively render a layer and its dependencies. */
Function RenderLayer (layer):
if IsRendered(layer) then

| continue;
end
for dep in layer.dependencies do

| RenderLayer (dep);
end
InvokePreRenderHooksFor (layer);
layer .Render (emulator);

InvokePostRenderHooksFor (layer);
Algorithm 1: Rendering flow

Rendering is the process of requesting the various layers in the emulation to convert the internal
configuration and data structures to the core-class objects (i.e., the intermediate representations of real-
world components like networks, computers, routers, and more). Rendering is s multi-stage process. The
detailed rendering workflows are described in algorithm 1.

The rendering process will first try to resolve all bindings, with the process detailed in the binding

section. If some virtual nodes cannot be resolved with the bindings provided, the rendering process

22

will error out and let the users know the details. The overall workflow for the render and configure
stage is the same. Both processes will iterate through all layers within the emulation. For each layer,
the renderer will invoke a recursive function to render the layer and dependencies of the layer. In the
recursive function for render and configure, they first check if the layer is rendered or configured. If
not, they iterate through all layer dependencies and recursively call the render and configure on the
dependencies.

The renderer also offers the “hook” feature. Users can “hook” into the various steps of the rendering
process, namely pre-configuration, post-configuration, pre-render, and post-render, and perform custom
actions. To add a new hook, the user would need to create a new Hook class instance. The Hook class
instance will contain the name of the layer to target and the step (pre-configuration, post-configuration,
pre-render, and post-render) to target. Multiple hooks for the same layer and the same step can be
added. The renderer will invoke the user-defined hooks during the appropriate stage in the rendering
process and pass the emulator object to the user-defined function. The hook mechanism is useful if the

user wants to make some changes to the layer behavior but does not want to change the layer code.

3.8 Components: sharing emulations

One other major feature of the SEEDEMU framework is the ability to reuse already built emulation in
another emulation. In order to enable easy reuse, besides having all components working independently,
some mechanism enabling easy export and import of emulation is needed. While one can copy and paste
code to “share” the emulation, the framework offers two more flexible options, emulation import/export,

and component classes, to facilitate easy sharing of the emulations.

3.8.1 Emulation import and export

The easiest way one can share an emulation is through the Emulator: :dump and Emulator::load API.
The dump API will dump all information in the emulation (the global object registry, the bindings, the
layers, the hooks, and more) into a single file. The load API, in turn, reads the dumped objects back
into the emulator. The dump file is the emulation serialized into a single binary file. The serialization
and deserialization are accomplished with the python pickle library.

The dump API only supports dumping not-yet-rendered emulations, as its sole purpose is to facilitate
sharing the “parts” of emulation. The “parts” are supposed to use to build a bigger emulation. Since no
changes can be made after the emulation is rendered, it does not make sense to allow dumping emulations
that are already rendered.

The load API overrides all the changes on the calling emulator object, so one should not make
changes to the emulator object prior to loading dumped files. The recommended approach is to create

a new emulator class instance, invoke the load method, then merge the new emulator instance and the

23

old emulator instance with the merge API. The merge API is discussed in the later section.

3.8.2 Component classes

One of the drawbacks of sharing emulations using the dumped file is that there are only limited options
to customize the imported emulation. The SEEDEMU framework offers the Component interface as
a guideline as to how one can create a sharable and customizable emulation “part.” Consider the
component interface as a “emulator factory class.” They produce new emulator objects with the given
configuration options. One example of the component class is the BGP hijacker component, allowing
users to set the ASN, prefix to hijack, and exchange to join. The hijacker component will generate an
emulator will the appropriate base, routing, and BGP layer to support the hijack scenario. The user can
then use an API to get the emulator and merge it with the emulation they are building.

There is only one method, get, required on the component interface. The get method needs to
return an emulator object. One would call this method if they want the actual component to be merged

with their emulator.

3.8.3 Merging emulations

The Emulator::merge method tries to merge two emulators. It merges the current emulator with
the given emulator and returns a new, merged emulator. It merges the bindings, hooks, virtual node
definitions, and layers. However, in some cases, one may merge two emulations that contain the same
type of layer. There needs to be some way to handle the merging of the layers. In order to solve the
merging problem, the merger mechanism is developed. When one invokes merge, they optionally pass in
a list of mergers to handle to merging of the layers. Furthermore, a set of default mergers is provided to

support the common merging case of the commonly used layer.

Default base layer merger The logic of the default base layer merger is that it will try to merge
two base layers with no overlapping Internet exchanges and autonomous systems. If there are conflicting
autonomous systems or Internet exchanges, the autonomous system or Internet exchange in the first
emulation will be used. The user can optionally supply a callback function to handle the merging of the

autonomous systems and Internet exchanges.

Default service layer merger All the service layers share a common property, the pending targets.
A shared service merger interface is provided to help to merge these service layers. Most of the service
needs no additional logic to handle the merging. They only need to implement the _createService

method to return a new instance of the service to serve as the container of the merged service.

24

Default BGP looking glass service merger The BGP looking glass service uses the service merger

interface and has no additional logic to it.

Default Cymru IP origin service merger The Cymru IP origin service merger uses the service

merger interface and merges the manually created DNS records.

Default DNSSEC layer merger The DNSSEC layer merger merely merges the list of DNSSEC-

enabled domains.

Default DNS caching service merger The DNS caching service merger uses the service merger

interface and has no additional logic to it.

Default DNS service merger The DNS service first uses the service merger interface to merge the
targets, then recursively merges the zone trees in the services. It errors out if a domain name is a zone

in one service and a record in the other service.

Default EBGP layer merger The EBGP layer merger merges all peerings (Internet exchange peer-
ings, route server peers, cross-connect peerings). For the Internet exchange peerings and cross-connect
peerings, if the peering relationship in two layers for the same peering differs, the relationship in the
first emulator will be used. Users may supply a callback function to handle the merging for when the

relationship differs.

Default IBGP layer merger The IBGP layer merger merges the list of masked autonomous system

numbers in the two layers.

Default MPLS layer merger The MPLS layer merger merges the list of MPLS-enabled autonomous

system numbers and manually defined edge routers in the two layers.

Default OSPF layer merger The OSPF layer merger merges the list of masked autonomous system

numbers and networks and stubnets in the two layers.

Default reverse domain name services merger The reverse DNS service merger uses the service

merger interface and has no additional logic to it.

Default routing layer merger The routing layer has no configurable options. The merging operation

is just to create a new routing layer.

Default web services merger The web service merger uses the service merger interface and has no

additional logic to it.

25

4 The base layers

Not to be confused with the base layer, “base layers” is the name of the type of layers. The base layers
are a group of layers that servers as the base of the emulation. One of the most important roles of base
layers is to provide layer two connectivity and layer three routing between all nodes in the emulation.
Not to be confused with the base layer, which is the layer that provides the APIs for one to create

Internet exchanges, autonomous systems, hosts, and networks.

4.1 The base layer

The base layer helps one create layer two topologies in the emulation. It enables one to create autonomous
systems and Internet exchanges quickly. It also handles configuring network interfaces. (renaming
the interface from genetic names like ethO to netO (the name of the network in the emulation), and

configuring tc rules to emulated latency, packet drops, and more) The base layer provides API to:

e Create autonomous systems: Since the emulator aims for Internet emulation, it is logical to have
nodes and networks belonging to autonomous systems. The API allows one to create a new
AutonomousSystem instance. The instance helps one create and manage routers, hosts, and net-

works in an autonomous system.

e Create Internet exchanges: Internet exchanges are a special type of network that allows routers
from different autonomous systems to connect to. It is the essential feature that enables routing

across autonomous system boundaries.

4.1.1 Renaming interface

Base layer renames interfaces from their original names like ethO or enp2s0 into names that represent the
network they connected to, like net1. Depending on the emulation platforms, the interfaces may have
different names and orders inside the emulation node. Renaming them into the name of the connected
network guarantees that they will have the same name. This greatly simplifies the job of all routing
layers. For example, with the interfaces renamed, enabling OSPF for a network is to add an entry to the
OSPF-enabled interface list using the network name as the interface name. Using the name means this
configuration can be easily generated at compile-time instead of figuring out and filling in the interface

names at run time.

4.1.2 Examples

APIs of the SEEDEMU framework are created with ease of use in mind. Below are code snippets showing

how one can create a basic stub autonomous system and Internet exchange.

26

Creating Internet exchange Asshown in listing 2 with just one line of code, a new Internet exchange
is created. Routes from different autonomous systems can later join the exchange using the joinNetwork

call.

Listing 2: Creating and joining an Internet exchange

base.createInternetExchange (100)

Creating autonomous system With merely six lines of code, one can have a simple stub autonomous
system up and running. Listing 3 shows the full process for creating an autonomous system with one
router, one network, and one host running a web server. Details of the binding system and virtual nodes

are discussed later.

Listing 3: Creating a stub autonomous system

Create an autonomous system
as150 = base.createAutonomousSystem(150)

Create a network. By default, networks created have the "direct"

attribute and will be sent to BGP peers so that they are reachable
from other hosts within the emulation.

as150.createNetwork('net0')

Create a router and connect it to two networks
as150.createRouter('router0') . joinNetwork('net0').joinNetwork('ix100")

Create a host called web and connect it to a network
as150.createHost('web') . joinNetwork('net0')

Create a web service on virtual node, give it a name
This will install the web service on this virtual node
web.install('web150')

Bind the virtual node to a physical node
emu.addBinding(

Binding('web150', filter = Filter(nodeName = 'web', asn = 150))
)

4.2 The routing layer

The routing layer is a “hidden layer,” because it does not provide any configurable options but is just
there to provide the support for other routing protocols. The routing layer will install the routing daemon,
BIRD [9], on all router nodes, create a dummy loopback interface, assigns loopback IP to all the routes,
and extend and create extension methods on the Node core class to allow adding new dynamic routing
protocols to the routing daemon. The routing layer also handles adding default gateway on non-router

nodes to point to the nearest router node connected.

27

4.2.1 Multiple routing tables

The routing layer offers features to allow the use of multiple routing tables. The way that the other
routing layers use the multiple routing tables is that each routing protocol will store their routes in their
routing table. This will prevent unintentional route leaking from one protocol to another since one will
have to explicitly create pipes between routing tables to copy routes between routing tables. One such
example is OSPF. Generally, OSPF is not for handling a large number of routes, and therefore leaking

BGP routes into OSPF can cause performance issues and OSPF session flapping.

4.2.2 Direct interfaces

The routing layer handles the direct flag on networks. When a network has the direct flag, the routing
layer will add it to the direct protocol in BIRD, which generates routes for the prefix of the IP address
on the interface. These routes are saved in the t_direct routing table. Other routing protocols, like
BGP, can import these routes into their table and advertise them to peers. This is how internal networks
got announced to other autonomous systems in the emulator. The same practice is widely adopted in

the real world and offers a realistic emulation of the real world.

4.2.3 The dummy interface and loopback IP

The routing layer will also add a dummy interface with a generated loopback IP address. The range of
loopback IP defaults to 10.0.0.0/16, as this network belongs to ASO, which is an invalid autonomous
system number according to the default network assignment scheme. One can override the network
block used for loopback IP addresses bypassing it in the loopback_range parameter in the Routing
layer constructor.

This dummy IP address provides a unique loopback IP for every router in the emulation. The
loopback IP will only be reachable within the local network covered by the same OSPF domain by
default. It provides ease of configuration and redundancy for the other protocols like LDP and BGP.
The way it works will be detailed in the respective sections. Note that this should not be confused with

the loopback interface 1o and loopback IP address range 127/8.

4.2.4 The real-world integration

One other feature backed by the routing layer is real-world integration. The real-world integration
feature requires the corporation of the base layer, routing layer, and the compiler. The base layer will
need to create a special network and node with the “real-world” attribute. The “real-world” nodes are
nodes that are present in the emulation but do not participate in emulation. “Participate in emulation”
here means running services or routing protocols that allow interaction from other nodes within the

emulation. Instead, the “real-world” node sits in between the emulation and reality. They have access to

28

a “real-world” network, a special network that should provide Internet access to the outside world. They
may also have access to some emulated networks. They can route traffic from hosts inside the emulation
to the outside world or hosts VPN servers so that hosts from outside can join the emulated networks.
The former is usually done by announcing routes to other routers, and when traffic reaches it, it does
NAT to route traffic out. The latter is usually by creating some layer-two VPN and bridging the VPN
interface with the internal network.

Real-world hosts access the real-world node either utilizing port forwarding or having the real-world
have a publicly accessible IP address. This is mainly to enable the real-world hosts to connect to the
VPN servers. Since how such a feature is implemented depends highly on the emulation platform, the

main job for making the feature works is on the compiler.

Hiding real-world hops One trick used by the SEEDEMU framework to hide real-world hops from
the programs like traceroute is setting TTL of packets to 64 for traffic destinating the real world. Since
traceroute uses low-TTL packets, setting TTL to 64 when sending traffic out will make the next-hop
router that was originally supposed to get a packet with TTL of one get a packet with high TTL instead,
and continue routing packet normally. From inside the emulation, it would look like that the actual
real-world host is just one hop away from the real-world router node. This reduces the confusion. The

hiding behavior is configurable so that one can disable this behavior should one want to.

Remote access providers In order to allow real-world hosts to connect to the emulated network,
VPNs are used. However, since users may have different needs, and it is not feasible to develop all remote
access options to support every different use case, the SEEDEMU framework uses a generic interface for
offering remote access. The RemoteAccessProvider interface allows one to implement their own logic
to support remote access to emulated networks. The interfaces pass in the emulated network object,
the real-world node, and network object, and one can run and command they want on the real-world
node. One may even run a VPN client on the node that connects to other VPN servers on the real-world
node instead. The interface generalized the remote access feature and therefore opened up different

possibilities.

4.2.5 Examples
Here are some code snippets demoing how one can enable remote access to the real world or route traffic

from the emulation to the real world. Complete examples are in the case study section.

Creating router that routes traffic to the real-world To route traffic to the real world, one would
just create a real-world router, connect it to an exchange, and have it peer with some other autonomous

system.

29

Listing 4: Snippet for enabling access to real-world

as11872 = base.createAutonomousSystem(11872)
as11872.createRealWorldRouter('rw') . joinNetwork('ix101', '10.101.0.118")

ebgp.addPrivatePeering(101, 150, 11872, abRelationship = PeerRelationship.Provider)

Listing 4 shows all the API calls one would need to enable access to the real world. When one calls
createRealWorldRouter, the framework automatically fetches routes announced by the autonomous
systems in the real world. The auto fetch behavior can be disabled. One can also manually specify
routes they want to route to the outside. The createAutonomousSystem and joinNetwork call do the
same thing as demonstrated in the base layer snippet before. The addPrivatePeering call creates
private peering between two autonomous systems in the given Internet exchange. The details about

peering are in the next section.

Hosting VPN servers to connect real-world hosts to emulation Hosting a VPN server to allow

connection from the real world can also be done in a single API call.

Listing 5: Snippet for enabling access to real-world

as151 = base.createAutonomousSystem(151)
ovpn = OpenVpnRemoteAccessProvider ()

as1b1.createNetwork('net0') .enableRemoteAccess (ovpn)
as151.createRouter('router0').joinNetwork('net0').joinNetwork('ix100")

Listing 5 shows how one would enable remote access to an emulated network, net0O in AS151, for the
real world. The OpenVPN remote access provider will host an OpenVPN server that is reachable from
the real world. It uses a set of bulletin keys and certificates. A client-side configuration file is included
with the framework. One may also have the server uses their own key and certificate pair. Details are

in the case study section.

4.3 The EBGP layer

The EBGP layers enable automatic external BGP peerings via Internet exchange route servers, private

sessions in an Internet exchange, and cross-connects.

4.3.1 How is it done in the real world?

BGP peerings Generally, real-world BGP peers are done over Internet exchanges, or private inter-
connects. An Internet exchange, at its core, is simply a layer two switch where all members connect to
it and peer with each other over the switched links. When two autonomous systems use private inter-
connects to peer with each other, they will set up a BGP session across the link. However, when the two

autonomous systems join the same Internet exchange, they may not set up direct peering. They may

30

peer via the route server or not peer at all. The route server sends routes received from one autonomous
system to all other autonomous systems connected to the route server, effectively making a full-mesh
peering between all participants connected to the route server.

Autonomous systems may also have complex routing policies. For example, some may prefer routes
received over a private interconnect over an Internet exchange. Some may send different routes to the
route server than peers with the direct session over Internet exchange.

Besides regular peering in Internet exchanges, autonomous systems can also have a provider-customer
relationship. A provider will send the full Internet routing table to their customers (or, sometimes, upon
customer requests, sends no route at all or only a default route to the customer.) and re-advertise routes
received from the customers to all its peer or even its provider - a provider can be another provider’s

provider.

ISP tiers When considering providers, it is a common practice to classify providers according to their
tier. However, the definition of transit provider tier is somewhat ad-hoc; generally, tier-1 transit providers
are providers that do not need to purchase any transit from other providers to reach the entire Internet. In
other words, tier-1 transit providers can reach the entire Internet with only peering. Tier-2 two providers
can access a large part of the Internet via peerings but still purchase services from tier-1 providers to get
the full connectivity. Tier-3 providers are the providers that rely mostly on other providers to reach the
Internet. While tier-3 can also join Internet exchange to have peerings, the peering routes usually only
consist of a small part of their connectivities.

The provider tier is merely decided by how many customers they have and if other tier-1 ISPs want
to peer with them. Generally, when a small group of ISPs can reach their part of the “Internet” (usually
because they have so many customers, some of which may even be tier-2 ISPs), but not the part of the
Internet of the other ISPs of the same scale. This group of ISPs can peer with each other and send all
their customer routes to each other free of charge. In this case, these ISPs become tier-1s. In theory, if an
ISP gains enough customers, and joins enough Internet exchanges, and has enough private interconnects
to reach the entire Internet, they can become tier-1 too. However, there are still a lot of other factors,

like if the other tier-1 would like to peer with one and send all their routes to one.

Peering relationships and route filters Generally, there are only two types of peering relationships.
The first is the regular peering, where the autonomous systems send routes that belong to themselves or
their customers to the peer and do not re-announce routes received from peers to other peers. The other
relationship is a provider-customer relationship, where the provider sends all routes to the customer and
re-advertises the customer’s routes to other peers so that the world can reach the customer.

To ensure the peer or customers only send routes that belong to them or their customer, one will

usually apply route filters when importing routes from other autonomous systems. There are many

31

options to create route filters. In the real world, the most common option is to use the Internet Routing
Registry (IRR). IRR is a database that associates route prefixes with autonomous system numbers.
When peering with another autonomous system, one will generally send the other side their as-set. An
as-set is a set of autonomous system numbers. It is one type of object in an IRR database. From those
autonomous system numbers, one finds out route prefixes associated with those autonomous system
numbers and generates route filters based on the route object. A route object is also an IRR database
object. The route object associates a network prefix with an autonomous system number. There are also
sources of information besides IRR, like the Resource Public Key Infrastructure (RPKI) or just plain

human communication.

Route preferences While the BGP protocol has the AS_PATH attribute and preferring the routes
with shorter paths seems straightforward and logical, for providers, they rarely use AS_PATH as the most
significant factor when picking routes. For starters, a longer AS_PATH does not necessarily mean the path
is actually longer or slower - it merely indicates that the routes have traveled through more autonomous
systems. It is also possible that some autonomous systems along the path prepended some amount of
autonomous system numbers to the path. Peerings can also happen over links with different bandwidths.
A path with short AS_PATH may lead to a saturated link or a link with low bandwidth. Solutions to these
problems vary - there are traffic engineering options to steer traffic away from the saturated links, there
are also some other ad-hoc optimizations to move routes based on packet loss, latency, and other ad-hoc
metrics.

However, the one method that is the most basic is the LOCAL_PREF attribute of BGP routes. A route
with high local preference will always be preferred, no matter its AS_ PATH length. Generally, one will
give routes originated from oneself the highest preference, so the routes will not end up routing traffic
destinating oneself to other autonomous systems. The next preferred routes are generally the customer
routes, followed by the peer routes and provider routes. Customer routes are preferred over peer routes
and customer routes since the customer may multi-home with other providers. In such a case, traffic
should be sent directly to the customers instead of going through peers or transits, unless the customer
explicitly wanted to. And peer routes are usually more preferred than transit routes since transit routes
usually have a higher associated cost.

Large transit providers may also provide BGP communities to alter the route preference. Some
example of the communities includes “tag routes with (aaa:bbb) to set local-preference to XX in region
YY,” where XX is a number and YY is a region. This allows the customer to selectively alter routes in
a different region. For example, if the customer has some anycast setup, they may want the provider
to prefer local peer routes instead of sending traffic back to where they purchase transit service. Other

control communities may also be available, like controlling the export to some target autonomous systems.

32

There does not exist a standard for BGP communities (other than the well-known no-export and
no-advertise community, and even the well-known communities may not be supported everywhere), as

each provider implements its own action communities.

4.3.2 EBGP in the SEEDEMU framework

The EBGP layer, at its core, is relatively simple. It checks every peering configured. For each Internet
exchange, it will loop through every connected node and configure peering accordingly. The EBGP layer
errors out if any given peering relationship cannot be satisfied. An unsatisfiable peering relationship
generally means a cross-connection does not exist, one or both autonomous systems are not in the given
exchange, or the Internet exchange does not exist.

The SEEDEMU framework only defines three types of peering relationships and uses a set of default

preferences for the different types of routes.

Peering relationships and routing policies The EBGP layer has defined three types of peerings

relationships:

e Regular peer: In the regular peer relationship, both sides export their own routes and their

customer’s routes to each other. Routes imported from the other side are marked as peer routes.

e Provider-customer: In the provider-customer relationship, the provider side will export all routes
it has to the customer side (including its own routes, its peer’s routes, and other customer routes).
On the other hand, the customer side exports only its own routes and its customer’s route to the
provider side. When importing, the provider side marks the routes it learned from the customer
side as the customer route, and the customer side marks the routes it learned from the provider

side as provider routes.

e Unfiltered: In the unfiltered relationship, both sides export all routes to the other sides, and both

side marks the imported route as the customer route.

Note that in the BGP layer, BGP peers only enforce export policies. There is no filter applied when
importing routes from BGP peers. Since the filters are generated by the program, there will be no route
leak by default. This means if one wants to perform route hijack in the emulation or internally create
misconfigurations, they can easily do so. They simply need to export the route to their provider. The
real-world model of import-based filtering, while working great in the real world, does not fit in the
context of for-education emulations. Using export-based filters provides some degree of realism while
allowing one to create misconfigured scenarios and hijacks easily intentionally.

Figure 3 shows the route imported from seven different peers of the four types. The direction of the

arrow indicates the direction of routes being sent. Assuming the routes originated by AS150 is s, the

33

Provider A Provider B

. a’\a b/ b
Peer C —_—
(;1 AS150 67 Unfiltered Peer E
e
Peer D / ,)
4 f f g g
Customer F Customer G

Figure 3: BGP relationships and export filters

route exported to each peer are:
e Providera=s+ f'+g +¢
e Providerb=s+ f' +¢ +¢
e Peerc=s+f +g +¢
e Peerd=s+f +4 +¢
e Unfiltered peer e = s+a’ +b +c +d + f'+ ¢ (i.e., everything expect the routes received from E)
e Customer f =s+a +b + +d +¢e + ¢ (ie., everything expect the routes received from F)
e Customer g=s+a' +b +c +d +¢e + f (ie., everything expect the routes received from G)

In practice, for unfiltered and customer sessions, there is no filter applied at all (i.e., export all;
in BIRD’s configuration.). BGP, by default, will not send routes received from the peer back to the same

peer.

Route filters and BGP communities convention The EBGP layer filters route sent to BGP peers
with BGP communities according to the export policies defined above. Routes are tagged with different
BGP communities according to their source.

EBGP layer uses a variant of the BGP community [15], BGP large community [16]. In the early days,
people assumed 16-bit autonomous system numbers would be enough bit to support all networks [14].
However, very soon, the 16-bit autonomous systems numbers were nearly exhausted, and an extension
was added to BGP to allow 32-bit autonomous system numbers [17]. The old BGP community, therefore,
only supports a tuple of two 16-bit values. The BGP large community supports three 32-bit values [16].
In order to make sure one can use 32-bit autonomous system numbers with the EBGP layer, the EBGP
layer uses BGP large community to tag routes. In the EBGP layer, routes are tagged using the following

communities:

34

e Routes originated by the autonomous system itself are tagged with the large community asn:0:0,

where asn is the autonomous system of the current autonomous system.

e Routes received from the customers of an autonomous system are tagged with the large community

asn:1:0, where asn is the autonomous system of the current autonomous system.

e Routes received from the peers of an autonomous system are tagged with the large community

asn:2:0, where asn is the autonomous system of the current autonomous system.

e Routes received from the providers of an autonomous system are tagged with the large community

asn:3:0, where asn is the autonomous system of the current autonomous system.

These communities are then tested when exporting routes to other BGP peers. For example, if a
BGP speaker is exporting routes to its provider, it will only export those routes with one of the following

large communities:

e asn:0:0 (one’s own routes)

e asn:1:0 (customer routes)

Or, as a BIRD filter expression:

Listing 6: BIRD export filter
protocol bgp u_XXX {

ipvd {
...
export where bgp_large_community ~ [LOCAL_COMM, CUSTOMER_COMM];
& cao

I3

local 10.100.0.150 as 150;
neighbor 10.100.0.100 as 100;

Having the peering relationship and filter in place ensures an autonomous stub system does not
accidentally end up transiting other networks. Having the filters also sometimes creates suboptimal
forwarding paths - and just like the real world, those suboptimal forwarding paths are there because of
how providers peer and configure their network.

While filtering based on only the BGP communities is rarely the recommended practice in the real
world, it is perfectly applicable in the context of for-education Internet emulation. Since the filters and
route tagging are done automatically by the EBGP layer, there are, normally, no possible route leaks or
route hijacks. However, should one want to create a route hijack or route leak scenario, they can easily
do so by adding the appropriate BGP community to the routes.

BGP communities also help one to identify how a route gets to the router. For example, when

inspecting the BGP table in BIRD, one may see something like this:

35

Listing 7: BGP routing table
bird> s rou 10.161.0.0/24 all
Table master4:
10.161.0.0/24 unicast [u_as3 18:15:48.130] * (100) [AS161i]
via 10.100.0.3 on ix100
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 3 161
BGP.next_hop: 10.100.0.3
BGP.local _pref: 10
BGP.large_community: (3, 1, 0) (161, 0, 0) (150, 3, 0)
unicast [u_as2 18:15:48.131] (100) [AS161i]
via 10.100.0.2 on ix100
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 2 3 161
BGP.next_hop: 10.100.0.2
BGP.local_pref: 10
BGP.large_community: (2, 2, 0) (3, 1, 0) (161, 0, 0) (150, 3, 0)

Listing 7 shows how a route may look like on AS150’s router. For the first route, 3:1:0 indicates
that this route was received from a customer by AS3. By looking at the AS_PATH, it is clear that this
route is received from AS161 by AS3. The community 161:0:0 means AS161 originated this route, and
150:3:0 is tagged by the AS150’s router itself (i.e., the current router) to indicate that the route is
received from a provider. For the second available path, 2:2:0 indicates that the route was received

from a peer (AS3 in this case, as seen in the AS_PATH).

Default local preferences Default local preferences for routes imported from different peer types are

as follows:

e One’s own routes: 40 (the highest). If a route belongs to the autonomous system itself, the route
will have the highest route preference, 40. This ensures that as long as any internal path exists for
a prefix that belongs to the same autonomous system, no external BGP peers’ routes will be used.

In other words, no traffic to the local networks will go through the emulated Internet.

e One’s customer’s routes: 30 (2nd). If there exists any route to a customer, the route will be used.
If the customer has more than one provider, other paths, via some other providers, to the same
prefix may be available. Setting a high preference for the customer ensures that as long as the

customer is sending routes, those routes will always be picked.

e One’s peer’s routes: 20 (3rd). Peer routes are the 3rd preferred routes. Generally, peerings are
settlement-free, and therefore routes from a peer are more preferred, as routing traffic through a

transit provider usually has some associated cost.

e One’s provider’s routes: 10 (4th). Routes received from the providers are generally the least

preferred since one usually pays the provider to get transit service, and the higher the traffic one

36

moves through a provider, the more they need to pay. Unless a route can only be reached via a

provider, the provider will not be used.

Note that local preferences by default are only passed to and accepted from internal BGP sessions.
This means that if an autonomous system has two disjoint sites, each site will act as an individual
autonomous system. For example, even if one sees the routes are originated by the same autonomous
systems as itself, but there is no other way to reach that than going through another autonomous system,
it will use that route.

These local preferences are merely the simplified configuration of what an autonomous system may
use in the real world. However, it does not necessarily create the most optimal forwarding path - this
is the same in the real world, and to archive optimal forwarding, one may fine-tune the preference on a
peer by peer basis. Real-world providers also offer BGP action communities to, for example, allow one
to prepend the autonomous system number when exporting to some of its peers, or allow one to change
the local preference of the route on the provider side in some regions. These features are not included
with the EBGP layer, but one may implement such features by manually changing the configuration of

the routing daemon.

4.3.3 Multi-table for EBGP

The BGP layer does not use the default routing table. It creates a new routing table in BIRD named
t_bgp. The BGP routing table will contain only BGP routes. Both IBGP and EBGP use the same table.
All routes from the table t_bgp are also copied to the master routing table. Some other protocols may
also export routes to the t_bgp table for it to be announced to other peers. One such example is the
t_direct table. The direct table generates routes for the directly connected interfaces to the network
with the direct attribute set. The BGP layer imports these routes to the BGP table, t_bgp, with the
proper BGP community and local preference.

The reason multiple tables are used is to prevent interference. For example, since the OSPF layer
configures passive OSPF on Internet exchange interfaces, the type two LSA will be generated. If BGP
uses the same table as OSPF, it may end up turning the Internet exchange LAN subnets route from
OSPF into BGP routes and sending it to the downstream customers. Generally, the Internet exchange
LAN subnet should not be reachable from the outside Internet, and announcing the peering LAN is
generally considered a route leak. Having routing protocols attached to separated tables prevents such

things from happening unless one explicitly configures a pipe to export routes between tables.

4.3.4 Evaluation

The EBGP layer offers a realistic model of real-world BGP peerings. While it does not have advanced

features like BGP action communities built-in, one can always build such a feature by editing the config-

37

urations manually. The selected built-in features cover most of the real-world peering relationships and
enable real-world BGP behaviors. Some examples include suboptimal routing paths due to route pref-
erences, asymmetric routing due to preferences and peering relationships, and re-route behavior during

link outages, which are all the same behaviors as in the real world.

4.3.5 Examples

To set up peerings in the EBGP layer, one would use one of the peering APIs. addRsPeers API allows
one to configure a list of autonomous systems to peer with the route server at the given Internet exchange,
and the addPrivatePeerings API allows one to configure private peering sessions in a given Internet

exchange.
Listing 8: Create peerings
ebgp.addRsPeers (100, [2, 3, 4])

ebgp.addPrivatePeerings (102, [2, 4], [11, 154],
PeerRelationship.Provider)

Listing 8 shows how one would make AS2, AS3, AS4 peer with the route server at IX100 with the
addRsPeers API. The addPrivatePeerings API here make AS2 and AS4 the provider of AS11 and
AS154. The call will configure four pairs of peering sessions.

The peerings are done at render time. The EBGP layer will look for routers belonging to the given
autonomous systems in the given exchanges and configure the EBGP session between them during the

rendering.

4.4 Internal routing options

EBGP layer provides the option for routing in between the autonomous systems. However, to create a
realistic emulation of the Internet, routing within an autonomous system is also essential. For example, if
one would like to create a transit provider that has multiple routers, those routes need a way to exchange
routes between them. The most common option in such a case is combining internal BGP with another
interior gateway protocol.

4.4.1 How is it done in the real world?

Nowadays, every network has its own preferred technology stack for implementing internal routing. Some

of the most commonly used technologies include:
e Internal BGP sessions between routers, either with route reflector or full-mesh.
e Interior gateway protocols (OSPF, IS-IS, EIGRP, etc.)

e MPLS (LDP)

38

e Traffic engineering (RSVP, segment routing, etc.)

Internal BGP sessions between routers Generally, when a network has multiple edge routes (the
routes that connect to other autonomous systems), they would want to have those routers exchange
routes with each other. Since those routers speak BGP with the other networks, it makes sense also to
use BGP to exchange routes learned from the other autonomous systems.

Two important default behaviors of routers when sending routes over an internal BGP are: (1)
IBGP keeps the NEXT_HOP attribute unchanged, and (2) IBGP does not prepend one’s own autonomous
system number to the AS_PATH attribute.

Since the NEXT_HOP attribute is not changed, IBGP-speaking routers, upon receiving the routes from
another IBGP peer, need to know how to reach the NEXT_HOP provided by the peer. One would usually use
some other internal routing protocols, like OSPF, to support the nexthop resolution. Nexthop resolution
means that the IP address in the NEXT_HOP attribute is looked up in another internal routing protocols’
routing table (for example, in OSPF’s routing table), and nexthop for that route is used as the real
nexthop for the IBGP route. Due to this behavior, the IBGP protocol generally does not operate on its
own.

The other behavior of not prepending one’s own autonomous system number to the AS_PATH attribute
breaks BGP’s loop preventing mechanism, and therefore IBGP works around it by not exporting routes
received from an IBGP peer to any other IBGP peers. This means one will have to configure full-mesh
between all internal routers or set up route reflectors [18]. In the real world, the most common practice
is to set up some route reflectors and have all internal routers peer with those set of route reflectors. The
reason to have multiple reflectors is to provide redundancy, so there is no single point of failure.

Another commonly used option is the BGP confederation. BGP confederation is also used between
BGP routers within the same autonomous system. However, instead of not prepending ASN when
sending routes to internal peers, the BGP confederation prepends one private ASN from the pre-defined
set of private autonomous system numbers. This means it can operate in a similar faction with external
BGP - no full mesh or route reflector required anymore since the AS_PATH can reliably detect routing
loops now. This is generally used in large networks, where deploying IBGP for the entire network is
not feasible. It is also possible to mix IBGP with confederation. One can deploy small full mesh or

route-reflected groups of IBGP routers and connect those groups together with the confederation.

Interior gateway protocols As discussed in the last few paragraphs, internal BGP relies on interior
gateway protocols for nexthop resolution. There are many different interior gateway protocols. The most
commonly used ones are OSPF (Open Shortest Path First), IS-IS (Intermediate System to Intermediate
System), EIGRP (Enhanced Interior Gateway Routing Protocol). OSPF and IS-IS use a Dijkstra-based

algorithm to find the shortest paths to all subnets, and EIGRP uses the diffusing update algorithm.

39

EIGRP was a proprietary protocol and therefore was not as well-supported as other protocols. OSPF
and IS-IS are generally considered the most used IGPs. OSPF runs on IP and IPv6, whereas IS-IS runs
on the ISO protocol. IS-IS is considered protocol-independent, and it can support both IP and IPv6.

OSPF has developed a new version to support IPv6.

MPLS One may observe the pattern where a non-edge internal router may only be forwarding traffic
between a few interfaces. Yet, the router still needs to carry all routes from all other edge routers to make
correct routing decisions. MPLS (Multiprotocol Label Switching) [21] is one solution to the problem.
With MPLS, one can either manually or automatically create a forwarding equivalence class (FEC) for
all forwarding paths within the network. All traffic that enters from one interface and exits using another
interface can belong to the same FEC.

For example, for an internal router with three interfaces, A, B, and C, it can only have six ways of
forwarding traffic between interfaces (A to B, B to A, A to C, C to A, B to C, and C to B). Instead of
having this internal router carrying all the routes, it can use the FEC to forward traffic. When traffic
enters an MPLS backbone, the edge router has the full information on where it should forward this
packet (using information from IGPs). The edge router can assign the traffic to FEC. This way, the
non-edge, intermediate routers can forward traffic based on FEC. As shown before, a router with three
interfaces now only needs to forward traffic based on the six FECs it has instead of performing a routing
table lookup in a potentially huge BGP routing table. With MPLS, non-edge routers do not need to
carry the full routing table at all, which greatly reduces memory usage. Forwarding will also be much
faster since all non-edge routers only need to forward based on the small numbers of FECs now.

MPLS is protocol-independent, as suggested by its name “Multiprotocol.” One can put any payload
in MPLS: IP, IPv6, ethernet frames. So MPLS can be used to provide services like layer two transport.

The easiest option to build an MPLS backbone is with LDP (label distribution protocol) [22]. LDP
creates FEC for every router that runs LDP, so any internal router can reach any other internal routes

using MPLS. LDP relies on IGP to find the shortest path to any given internal router.

Traffic engineering As discussed in the last few paragraphs, protocols like LDP follow the best path
selected by the IGP. However, one may want the forwarding path of MPLS not to follow the best IGP
path. Example uses of this are to detour traffic away from hotspots where the capacity is lacking or to
have the traffic forward over a more “costly” (since “cost” in IGP are usually calculated based on link
bandwidth) but lower latency link. Protocols and technologies for this include Resource ReSerVation

Protocol (RSVP) and segment-routing-based network programming.

4.4.2 Internal routing in the SEEDEMU framework

The SEEDEMU framework supports the following options for internal routing:

40

e OSPF and IBGP, IBGP full mesh between all internal routers.

e OSPF, IBGP, and LDP. IBGP full mesh between only edge routers.

The SEEDEMU framework adepts the OSPF + IBGP full mesh option for internal routing and
optionally supports MPLS with LDP to eliminate the need for the full BGP routing table on non-
edge routers. The framework chose to use the full-mesh option since (1) all the configuration files
are automatically generated, so unlike in real life, configuration full-mesh does not require additional
effort. (2) full-mesh and route-reflector are two options to archive the same goal. The main focus of
the framework is to provide realistic emulation. Since both options archive the same goal, it offers no
additional value to the reality in the context of for-education emulations. And (3) setting up reflector-
based IBGP will require additional configuration, which conflicts with the goal of keeping setup as simple
as possible. Also, one may always configure the setup manually should one choose to.

BGP confederation also offers no benefit since the emulated network will not scale to the point where
it can benefit. Traffic engineering capabilities are limited on the Linux platform, which the emulator

uses, and is also out-of-scope for the SEEDEMU framework, therefore also not included.

4.4.3 The IBGP + OSPF option

When one includes IBGP and OSPF layer in the emulation, IBGP and OSPF will be automatically
enabled for all routers in all autonomous systems within the emulation. The IBGP and OSPF layer
offers APIs for one to disable IBGP and OSPF for a given autonomous system or a single network within

the autonomous system.

Loopback IP peering When the IBGP layer setup peerings, it uses the loopback address assigned by
the routing layer. Using the loopback address is generally considered the best practice since a router can
have multiple addresses on different interfaces. Using the interface address can lead to a few problems:
first, if the interface is down, the address is rendered unusable. While the router itself may still be
reachable from other paths since the address used for peering is down, the IBGP session is also down,
leading to unnecessary outages. Second, when configuring peering between two internal routers that
are not directly connected, there may be multiple possible addresses to use since both routers can have
multiple interfaces. The two sides must agree on what address to use, which will become a configuration
nightmare when there are many routers and interfaces. Using the loopback interface solves both of these
problems. Loopback interfaces are always up, and each router has a single unique address on its loopback
interface. Internal routers will learn each other’s loopback IP address with an internal routing protocol,

like OSPF.

41

IBGP layer implementation The IBGP layer configures full-mesh internal BGP sessions between all
connected internal routers unless the autonomous system is masked. It recursively goes through every
internal router (A), uses depth-first search to find all connected routes (B*), and configure peerings
between the routers. Peering is only configured from A to B*, meaning the same process needs to be
done on all (B*) for the BGP session to become mutual. Algorithm listing 2 shows how to auto full-mesh
works.

The IBGP layers also import and export routes using the t_bgp table.

Function dfs(start, visited):

if start in visited then
| return;

end
visited.append (start);
/* Loop through all networks connected to the current router. */

for inter face in start.getInterfaces() do
net = inter face.getNet ();

/* Skip to next network if it is not a local network. */
if net.getType() /= Local then

| continue;

end

/* Loop through all routers connected to the network. */

for neighbor in net.getAssociations() do
/* If the node is a router, add to the DFS result list, and start DFS
from that node. */
if neighbor.getRole() Router then
| dfs(neighbor, visited);
end

end
end
Function ConfigureMesh():
for local in routers do
remotes = |[;
dfs(local, remotes);
for remote in remotes do
if local == remote then
| continue;
end
/* Configures peering from local to remote. Peering from remote to local
still needs to be configured. */
ConfigureIBgp (local, remote);
end

end

Algorithm 2: IBGP mesh

The OSPF layer OSPF layer provides an automated option for the internal routing protocol. OSPF
is one of the most commonly used interior gateway protocols. Other widely used interior gateway
protocols include IS-IS, EIGRP, RIP. IS-IS relies on the ISO protocol, and the routing daemon SEEDEMU
framework used does not support it. EIGRP was a Cisco proprietary and was not that widely adopted.

RIP has some scalability issues. OSPF is therefore selected as the interior gateway protocol for the

42

SEEDEMU framework.

Generally, OSPF should only be used to carry routing information internal to the autonomous
system. Vanilla OSPF cannot carry any BGP route attributes, so BGP routing information is generally
carried by IBGP sessions between the internal routes. The OSPF layer will not redistribute routes from
other routing protocols.

OSPF is a link-state routing protocol. The way it “learns” routes is by exchanging information
with neighbors on the interfaces. It also generates routes (type two link-state advertisements) for the
non-point-to-point and stub networks for the interface it is running on.

The default behavior of the OSPF layer is to run OSPF actively on all interfaces facing the internal
networks and passively on all other interfaces. Running OSPF passively on an interface makes the routing
daemon not send out or accept any OSPF packets but still generates type two link-state advertisement
for the said interface. This allows other OSPF-speaking routers on the network to learn that the subnet
is reachable over the originating router. One main use case for this is to enable IBGP peers to resolve
nexthop. Since the nexthops are not changed when routes are re-advertised to an IBGP peer, the peer
needs to know how to reach the nexthop. If the peer is over an Internet exchange, running OSPF
passively on the Internet exchange interface creates routes for the nexthop to be recursively resolved.

OSPF enables other routing protocols like BGP to resolve the real nexthops and establish peering

with loopback addresses. OSPF layer needs routing layer to work.

The dummy interface The OSPF layer will always enable passive OSPF for the dummy loopback
interface. This will allow the /32 loopback IPv4 address configured for the router to be propagated to
other OSPF-speaking routers within the autonomous system. The loopback address is used by the IBGP
layer and to set up peerings and the MPLS layer to configure the LDP transport address. Reasons for

using a loopback address are discussed earlier in the IBGP section.

OSPF layer implementation The OSPF layer itself does not have much logic. It merely creates
OSPF protocols for the routers and adds interfaces to the protocol. The OSPF layer uses the master

routing table.

4.4.4 The MPLS option

The MPLS layer The MPLS layer offers the Multiprotocol Label Switching as an internal routing
option for autonomous systems. With MPLS, each unique path within the autonomous system belongs
to the same forwarding equivalence class. Multiple routes can use the same forwarding equivalence class.
For example, consider a setup where a group of routers is chained together: R1 - R2 - R3. If R1 and
R3 want to send traffic to each other, they have to go through R2. R1 and R2 are edge routers and may

carry large routing tables. In the traditional IP routing, R2 will have to learn all routes from R1 and

43

R2 to be able to forward traffic properly. In MPLS, however, there are only two forwarding equivalence
classes created, one for R1 to R3 via R2 and one for R3 to R1 via R2. Now, instead of keeping all routes
from R1 and R3, R2 only needs to keep track of a few MPLS labels, which greatly reduces resource
consumption on R2.

The MPLS layer classifies routers into two types: provider edge router and provider router. Provider
edge routers are routers that connect to an external network (Internet exchange or cross-connect to
another autonomous system) and routers that connect to an internal network with at least one host
node attached. Provider edge routers need the full IP routing table on them since they need to do IP
forwarding. The other type, provider routers, are routers that are only connected to other routers. These
are also known as label switch routers in MPLS. They do not forward IP packets; they only forward
traffic based on MPLS labels and therefore do not need the IP routing table. One may manually mark
a router as edge using API provided by the MPLS layer.

The MPLS layer replaces OSPF and IBGP. IBGP is still used, but now IBGP sessions are only
established between edge routers. OSPF is also still used to exchange internal routes like loopback
addresses. In addition to OSPF, LDP is also enabled on every router to create labels for the forwarding
equivalence classes. For the MPLS layer to work, support from the Linux kernel is required. When the
emulation is running inside a container, the container host must enable MPLS support in its kernel.

Generally, this is done by loading the mpls_router module on Linux.

MPLS layer implementation The MPLS layer first uses the same strategy as the IBGP layer to
collect a list of all reachable routers, filter out the non-edge routers and configure IBGP peering to those
in the list. For LDP and OSPF, instead of using the BIRD routing daemon, it uses FRRouting [10], since
BIRD does not currently have LDP support. The way OSPF is set up is the same as the OSPF layer.
LDP is configured to run on all internal interfaces and uses the loopback address on the dummy interface

as the transport address.

4.4.5 FEvaluation

The SEEDEMU framework offers the option to automatically deploy two of the most commonly used
internal routing solution in emulation. While there are many more options used in the real world, they

mainly offer the same behavior with the included options.

5 The service layers

Service layers are layers that install services on a single node.

44

5.1 Domain name related services

Domain name service is another one of the essential parts of the modern Internet. In SEEDEMU, the
domain name services are handled through a set of services layers. The domain name service itself
provides the tools for one to host zones on different servers. It also has built-in mechanisms to keep
track of what zones are installed at what nodes to allow completing the full domain name server chain
(root server, TLD server, etc.) automatically. The domain name caching server serves as the recursive
DNS server and handles the actual DNS quires from users. There are also zone-generating layers, which

create DNS zones to support the features like reverse DNS [23].

5.1.1 The domain name server service

How it is done in the real world In the real world, domain name servers are structured like a
tree. The root server hosts the pointers to the top-level domain servers (like, .com, .net, .edu, etc.).
Furthermore, top-level domain servers host pointers to the actual domain name servers for the publicly
available domains.

Since the “pointer” (i.e., the NS record) needs to be a domain name instead of an IP address, a
higher-level server will host A record for the name servers for the domains. For example, if example.com
uses nsl.example.com as name server, an A record for nsl.example.com must be provided directly in

the . com zone to allow resolution of domain name ns1.example.com. This is also known as glue record.

Domain name service layer in the SEEDEMU framework SEEDEMU framework runs the real
domain name server software, bind9 [11], and replicates the behavior of real-world domain name server.
Users will manage and create zones using the DNS layer. Internally, the DNS layer keeps track of the
zone in a tree structure, where each zone can have a list of records and a list of children zones, where
they are also the same tree structure.

During the render stage, the DNS layer will generate NS records, and the glue A records in the parent
zone pointing to children zones. All the name server references are added automatically, following the
tree structure. This simplifies the deployment process of the DNS infrastructure. One only needs to
focus on creating zones and adding records one wants, while all the tedious works of adding reference
and creating the SOA records are handled by the DNS layer in a fully automated faction. If one wants
to disable the automation and manage the SOAs, NSs, and glue records themselves, they can also disable

the automated behaviors.

Example The SEEDEMU framework aims for ease of use. Creating a DNS infrastructure can be done

it just a few lines of codes, given that the base layers are already configured.

45

Listing 9: Creating a DNS infrastructure

dns.install('dns-root').addZone('.")
dns.install('dns-com-t1ld').addZone('com. ')
dns.install('dns-net-tld').addZone('net."')
dns.install('dns-example-com') .addZone('example.com."')
dns.install('dns-example-net').addZone('example.net.')

dns.getZone('example.com. ') .addRecord('@ A 100.150.0.79"')
dns.getZone('example.net.').resolveToVnode('web151")

emu.addBinding(Binding('dns-.*"'))

Listing 9 shows how one can build a DNS infrastructure with two top-level domains, .com and .net,
and two user zones, example.com and example.net, where each user zones having a single A record. The
install call installs a DNS server on a virtual node and returns the server object. The addZone call tell
the sever to host the given zone. If a zone does not exist, calling addZone creates it automatically. In
the example above, the virtual node dns-root hosts the root server, dns-com-t1d hosts the .com server,
and so on.

To retrieve or create a zone, one can use the getZone call. The call returns the zone object, and
one can add records using API on the zone instance. One can also point A record to a virtual node name
using the resolveToVnode API.

As the last step, one will create bindings for the name server virtual nodes to be hosted on physical
nodes. The example above does not provide any filter, meaning all the name servers will be randomly

bound to a physical node. Once they are bound, the DNS layer will generate the NS and glue A records.

5.1.2 The local domain name server service

The other part of the DNS infrastructure is the local DNS, also called recursive DNS or DNS cache
server. Individual hosts on the Internet generally do not perform the full DNS lookup themselves. They
will ask for a recursive DNS, and the recursive DNS will perform a recursive lookup, starting from the
root DNS to the final DNS that hosts the domain name one queries. The recursive DNS is usually hosted
by the service provider or an organization itself. There are also public anycast recursive DNS providers

by major Internet companies.

Domain name caching service layer in the SEEDEMU framework In the SEEDEMU frame-
work, recursive DNS is provided by the DomainNameCachingService layer. The service can be installed

on virtual nodes and bound to physical nodes with bindings.

Locating the root servers In the real world, the list of root servers is usually bundled with the
installation of the recursive DNS server. While one can host the root DNS in the emulator with the IP
address of real root DNS; it is rather inconvenient to host all root servers. In the SEEDEMU framework,

the DomainNameCachingService layer will by default automatically detect if the DNS layer exists in the

46

emulation and collect IP addresses of the root servers from the DNS layer. One may also manually set

a list of IP addresses to use as root servers for each caching server or disable the behavior completely.

Changing DNS settings To use a recursive name server hosted by the caching service layer, one still
needs to manually configure the hosts to use it as the default name server. On Linux based system,
this is generally done by modifying the /etc/resolv.conf file. The SEEDEMU framework provides the
setNameServers API at the Base, AutonomousSystem and Node level, for one to change name server
settings for all nodes within the emulator, all nodes within an autonomous system, or a single node.
More specific settings override changes of the less specific settings. For example, if one configure name

servers on the host object and at the autonomous system level, the host-level setting will be used.

Example One can configure and use a DNS caching server in just a few lines of code.

Listing 10: Configuring local DNS
ldns.install('ldns')

as152.createHost('n0').joinNetwork('net0', address = '10.152.0.53")
emu.addBinding(Binding('ldns', filter = Filter(ip = '10.152.0.53')))
base.setNameServers(['10.152.0.53'])

In listing 10, a local DNS is installed to virtual node named 1dns. Then, a physical node named no0 is
created in AS152, connected to a network named net0, and manually assigned the address 10.152.0.53
to it. In the next step, a binding is created to bind the virtual node named ldns to physical node

with IP address 10.152.0.53. Last, setNameServers is invoked to make all nodes in the emulation use

10.152.0.53 as their DNS.

5.1.3 Make traceroute looks better

By default, command-line utilities like traceroute and mtr performs reverse DNS lookup using the
in-addr.arpa zone [23] on IP addresses as they do the trace. A lot of traceroute utilities also allow
one to perform ASN lookup. It allows one to see which autonomous system each hop in the traceroute
belongs to.

For IPv4, reverse domain name lookups are done with the in-addr. arpa zone using the PTR record.
For example, to look up the reverse domain name for IP the address 128.230.0. 1, one will query the PTR
record for 1.0.230.128.in-addr.arpa. At the time of writing, this resolves to mh7000-0-1.syr.edu,
and therefore it will be shown in traceroute should 128.230.0.1 appear in the path.

The ASN lookup feature does not have a standard. However, the most commonly used service is
the Cymru IP origin service. Like the reverse DNS zone, Team Cymru provides the autonomous system
information for IP prefixes via DNS. They use TXT records to show the origin information of an IP

address. The traceroute utilities usually query the origin.asn.cymru.com zone to get details.

47

Listing 11: Cymru query example
% dig +short TXT 1.0.230.128.origin.asn.cymru.com

"11872 | 128.230.0.0/17 | US | arin | 1987-05-06"
"11872 | 128.230.0.0/18 | US | arin | 1987-05-06"

Listing 11 shows an example query that the traceroute utilities may send. The first column indicates
the autonomous system that currently announces the prefix, the second column indicates the actual
prefix, the third column indicates the country code that this prefix is associated with, according to the

IP allocation, the fourth column indicates the name of the regional Internet registry that manages the

allocation of the prefix, and the last column shows the date of prefix allocation.

The zone-generating services In order to offer a more realistic experience, the SEEDEMU frame-
work includes two zone-generating layers that create new zones in the DNS layer. These layers generate
zones for cymru.com and in-addr.arpa, so one will be able to see the reverse domain names and the

associated autonomous systems when one does traceroute inside the emulator.

Example The two zone-generating layers do not require configuration. To use them, one will just add

the layer into the emulator and host the generated zones on some servers.

Listing 12: Hosting the generated zones

emu.addLayer (ReverseDomainNameService())
emu.addLayer (CymrulpOriginService())

dns.install('dns-root').addZone('.")
dns.install('dns-com-tld') .addZone('com."')
dns.install('dns-arpa-tld').addZone('arpa."')
dns.install('dns-in-addr').addZone('in-addr.arpa."')
dns.install('dns-cymru') .addZone('cymru.com. ")

emu.addBinding(Binding('dns-.*"'))

Listing 12 shows how one can create a DNS infrastructure and host the zones. One would also have
to run a recursive DNS server and use the recursive server as the DNS server for the query to reach the

correct zone.

Listing 13: mtr result

HOST: hostO-net0.hode.as153.net Loss/, Snt Last Avg Best Wrst StDev
1. AS153 routerO-netO.rnode.as153.net 0.0% 10 0.4 0.4 0.3 0.6 0.1
2. AS2 r0-n0.rnode.as2.net 0.0% 10 0.4 0.4 0.3 0.6 0.1
3. AS2 rO-nl.rnode.as2.net 0.0% 10 0.5 0.4 0.3 0.6 0.1
4. AS2 rO-n2.rnode.as2.net 0.0% 10 0.4 0.4 0.3 0.6 0.1
5. AS3 r0-n0.rnode.as3.net 0.0% 10 0.5 0.4 0.4 0.5 0.1
6. AS153 routerO-net0.rnode.as153.net 0.0% 10 0.4 0.4 0.3 0.6 0.1
7. AS152 routerO-netO.rnode.as152.net 0.0% 10 0.6 0.6 0.5 0.7 0.1
8. AS152 example-web-net0.hnode.as152.net 0.0% 10 0.8 0.7 0.6 1.5 0.3

As shown in listing 13, with the DNS correctly configured, one will be able to see the reverse DNS

and the ASN when they do traceroute inside the emulation.

48

5.1.4 DNSSEC

DNSSEC is a security extension to the DNS. DNSSEC enables the servers to sign their response cryp-
tographically, therefore allowing one to make sure the answers are valid [20]. DNSSEC works by storing
the fingerprints of the certificate used for the singing zone and records in the parent zone - the parent
zone, in turn, store the fingerprints in their parents. This chain of trust goes all the way up to the root
DNS. Generally, the fingerprints of the root DNS are shipped with the recursive DNS server software.
The simple fact that DNS is already a chain-like structure allows easy implementation of the chain of
trust.

In the SEEDEMU framework, the DNSSEC feature is provided by the Dnssec layer. Since generating
the key pairs for zone signing requires specialized utilities, the key pairs are generated at run time. The
fingerprints are then submitted to parents using the nsupdate utility. The DNSSEC layer uses the
dynamic signing feature of the bind name server. Therefore, one can update zone files at run time, and

the new records will be automatically signed.

5.2 Other services

The SEEDEMU also provides a set of other services one can use. The following sections cover the
important ones. It is also trivial to implement new services in the SEEDEMU framework. Details of

how one may add new services to the framework are in the case study section.

5.2.1 The Ethereum service

The Ethereum service allows one to host a private Ethereum chain in the emulator. One can build a
functional blockchain using the Ethereum service. One can also easily experiment with smart contacts
using the private chain. One can spin up an Ethereum chain by installing Ethereum nodes on virtual
nodes, then bind those virtual nodes to physical nodes. The SEEDEMU framework initializes the chain
with low difficulty, allowing one to easily mine ether and perform any transaction they want.

The Ethereum service uses the official go-ethereum program to run the chain. The ethereum servers
are run with a high nice value, and therefore they will yield CPU resources should other programs in
the emulation needs them. This allows one to mine ether while allowing other programs on the host to
have sufficient compute resources to operate normally.

The ethereum servers need some “boot nodes” in order to discover other nodes. By default, the
Ethereum layer makes all nodes each other’s boot node. Every node publishes its fingerprints at run
time, and every node will use every other node as boot nodes. One may optionally designate a few
nodes as dedicated boot nodes; in such a case, only the dedicated boot nodes will be used as boot nodes.
All other nodes use those nodes as boot nodes. Having fewer boot nodes has some slight performance

benefits when running a large number of nodes.

49

Example One can easily “drop-in” a few Ethereum nodes by installing some Ethereum nodes on virtual
nodes and creating an empty binding for them. Since Ethereum nodes are peer-to-peer by nature, they

can be located anywhere on the network, and therefore the empty filter can be a good fit.

Listing 14: Creating an Ethereum chain

eth_servers = []

for i in range(0, 5):
vnode_name = 'eth{}'.format (i)
eth_servers.append(eth.install(vnode_name))
emu.addBinding (Binding(vnode_name))
emu.getVirtualNode (vnode_name) . setDisplayName ('node-{}'.format(i))

eth_servers[0] .setBootNode (True)
eth_servers[1] .setBootNode(True) .startMiner ()
eth_servers[2] .startMiner ()

smart_contract = SmartContract('./contract.bin', './contract.abi')
eth_servers[2] .deploySmartContract (smart_contract)

Listing 14 shows how one may create five Ethereum nodes, with them installed onto random physical
nodes in the emulation. Since the physical nodes are picked randomly, the code above also assigns display
names to the nodes to quickly identify them later on the map. The code above also has two nodes
explicitly configured as boot nodes so that nodes will not use all other nodes as boot nodes. Two of the
nodes will also start mining when the emulation starts. On the second miner node, a smart contract
will also be deployed once it has enough ether. However, one can manually start mining or deploy smart

contracts by accessing the geth console of the node after the emulation is started.

5.2.2 The web service

The web service is a simple one. It merely hosts a nginx web server. By default, the server will host a
static index page on the well-known HTTP port (i.e., 80). The static index page shows the autonomous
system number and the node name of the server running the web server. Web services are the simplest
service in the SEEDEMU framework. It provides a good starting point if one wants to develop their own

service. It also provides a way to fill physical nodes with a dummy service.

Example To install a web server, one can create a virtual node and bind it. Listing 15 shows how one

can do it.

Listing 15: Creating a web server

web.install('web-server')
emu.addBinding(Binding('web-server'))

50

5.2.3 The BGP looking glass service

The BGP looking glass services hosts a BGP looking glass web server for an autonomous system. The
BGP looking glass is generally provided by the service providers for debugging purposes. The BGP
looking glass is a web page that allows one to look for a prefix in the provider’s BGP routing table. The
looking glass service is backed by an open-source project, bird-1g-go [13]. It is a looking glass for the
routing daemon used in the SEEDEMU framework, BIRD. It consists of two parts, a frontend and a

)

“proxy.” The “proxy” is a piece of software running on the router node that handles BGP quires from

the frontend.

Example To run the looking glass, one will create a virtual node for the server, “attach” routers to

the server, and bind the virtual node.

Listing 16: Creating a looking glass
lg.install('lg-as152').attach('router0') .attach('routerl')

emu.addBinding(Binding('lg-as152', filter = Filter(asn = 152)))

Listing 16 shows how one may create a looking glass node for AS152. The code above assumes
AS152 has two routers, router0 and routerl. The server is first installed onto the virtual node and
then attached to the two routers. When binding the node, one must make sure the node is installed to

a physical node within AS152 for the looking glass to find the correct router to attach to.

5.2.4 The Botnet services

The botnet services allow one to host a simple botnet in the emulator. The botnet services consist of
two parts - the client and the server. Unlike the real world, where hosts on the Internet got infected
to become bots, bots in the SEEDEMU framework are manually created by installing the botnet client
service on them. One will then install the botnet controller services on one or more nodes and have the
client connects to one of the controllers.

The botnet services in the SEEDEMU framework are based on the open-source project, boyb [12].
Since the byob framework generates payload dynamically at run time, the botnet services use a similar
approach to the DNSSEC layer and Ethereum, where parts of the setups are only done in run time. In
run time, the controllers will generate the payloads, and clients download them and “infect” themselves

at run time.

Example To build a botnet, create one or more controllers, and have some clients connected to those

controllers.

Listing 17: Creating a botnet

controller.install('cc-server')

51

emu.addBinding(Binding('cc-server',
filter = Filter(nodeName = 'controller') action = Action.NEW))

for i in range(0, 5):
vname = 'bot{}'.format (i)
client.install(vname) .setServer('cc-server')
emu.addBinding (Binding(vname, action = Action.NEW))

Listing 17 shows how on can create a botnet. The code above first installs the controller to the virtual
node name cc-server. It then tells the emulator to create a new physical node for the controller. Since
no filter rules other than the name are given, the physical node will be created in a random autonomous
system and connected to a random network. The physical node running the controller will be given the
name controller since that was defined in the filtering rule. Next, five clients are created and connected
to the controller. Their bindings also use the NEW action. This time, no node name was given so that
the physical nodes will be picked completely randomly - random name, random autonomous system, and

random network.

6 Compilers

Once the user renders the layers, all the configurations in layers and services are applied to the physical
nodes. IP addresses, interfaces, and networks are also created. In other words, all changes made in
the emulation are now being “rendered” into core classes. For one to be able to use the emulation,
the core classes still need to be “compiled” into something that the underlying emulation platform can

understand.

6.1 The Docker compiler

The main focusing platform of the SEEDEMU framework is docker; this section covers the design and
implementation of the docker compiler. First, the docker compiler produces a folder. The output folder

has the following structure:
e docker-compose.yml
e dummies/

— hash of the image name...

— hash of another image name...

e name of the physical node/

— Dockerfile

52

— hash of the file to be copied into the node...

— hash of another file to be copied into the node...

The docker-compose.yml file The docker-compose.yml file at the root of the output is the config-
uration file for the docker-compose utilities. The file defines nodes to bring up, Dockerfile to use for
the node, the context of the node, network it connects to, and metadata. The file also defines networks,

their MTU, the prefix, and also metadata. Listing 18 shows how a docker-compose.yml may look like.

Listing 18: Snippet of docker-compose.yml file

version: "3.4"
services:
cfee3a34e9c68ac1d16035a81a926786:
build:
context:
dockerfile: dummies/cfee3a34e9c68ac1d16035a81a926786
image: cfee3a34e9c68ac1d16035a81a926786

... more dummy images ...

rnode_2_r100:
build: ./rnode_2_r100
container_name: as2r-r100-10.100.0.2
cap_add:
- ALL
sysctls:
- net.ipv4.ip_forward=1
... more sysctl optiomns ...
privileged: true
networks:
net_ix_ix100:
ipv4_address: 10.100.0.2

... more connected networks ...
labels:
org.seedsecuritylabs.seedemu.meta.asn: "2"
... more metadata (see web-UI section)
... more nodes ...

networks:
net_2_net_100_101:

driver_opts:
com.docker.network.driver.mtu: 1500

ipam:
config:

- subnet: 10.2.0.0/24

labels:
org.seedsecuritylabs.seedemu.meta.type: "local"
... more metadata (see web-UI section)

... more networks ...

The file begins with the services section, which defines the containers to start. However, the first

few containers are not real nodes; they are dummy nodes. In the Dockerfile of dummy nodes, it refers

53

to an image and does nothing more. The image options re-tag the image with a new name. All future
references to the same image will use the re-tagged image. Images are re-tagged to reduce the number
of pulls to the docker image repository.

There are serval benefits to this. For starters, referencing the images in the repo takes time since
the repo is usually hosted on the Internet. Second, if the referenced image is custom-built, it may cause
the official docker repo server to rate-limit pulls to the image. According to the docker documentation,
pulls to images, even if the image is already cached locally, can contribute to the rate limit. Re-tagging
the images eliminates this problem since it creates a local copy of the image under a different name.

After the dummy nodes, it is a list of definitions of the nodes actually in the emulation. One may note
the ALL under the cap_add section and the true flag under the privileged option. Granting permission
to containers generally follows the minimal-permission principle. However, when running emulation, it is
impossible to know what the application running inside containers will need ahead of time. The security
aspects of the containers and the emulation platforms are out-of-scope for the SEEDEMU framework.
The privileged flag allows the container to update sysctl option at the runtime. A few sysctl options
are used by the MPLS layer to assign MPLS label ranges and also by the docker compiler itself to disable
the reverse path filter.

The following configuration section defines the networks. The configurations for networks are pretty

self-explanatory, and therefore not detailed here.

The dummies folder The dummies folder stores the Dockerfile for dummy nodes.

The folders for containers Next, each physical node in the emulation is converted into a self-

contained folder. Details are in the next section.

Node metadata The docker compiler also attaches “metadata” like their autonomous system number,
the name of network nodes connected to, the IP addresses, and more to containers using container labels.
The web UI backend then reads these labels to provide topology information to the web Ul Details are

discussed under the web UI section.

Network metadata Networks also have metadata. The metadata is also attached to networks using
labels. The metadata includes the owner autonomous system number of the network, name of the
network, prefix of the network, description, and display name of the network.

6.1.1 Node compilation

This section details the design decisions and implementation of the node compilation (i.e., turning the

core class, Node, into Dockerfile).

54

Each physical node is compiled into its own folder under the output folder of the docker compiler.
In the folder, there will be one Dockerfile and some other files whose names are MD5 hashes. A

Dockerfile for a node may look like this:

Listing 19: Example of Dockerfile file

FROM cfee3a34e9c68ac1d16035a81a926786

ARG DEBIAN_FRONTEND=noninteractive

RUN echo 'exec zsh' > /root/.bashrc

RUN apt-get update && apt-get install -y --no-install-recommends curl dnsutils ipcalc iproute2
iputils-ping jq mtr-tiny nano netcat tcpdump termshark vim-nox zsh

RUN apt-get update && apt-get install -y --no-install-recommends nginx-light

RUN curl -L https://grml.org/zsh/zshrc > /root/.zshrc

COPY 082b96ec819c95ae773daebde675e£80 /start.sh

COPY d18858afc6bb66ec3a19d872077acfd2 /seedemu_sniffer

COPY 17ac2d812a99a91e7£f747eldefb72a29 /seedemu_worker

RUN chmod +x /start.sh

RUN chmod +x /seedemu_sniffer

RUN chmod +x /seedemu_worker

COPY e01e36443f9f72c6204189260d0bd276 /ifinfo.txt

COPY d3d51fdf7f4bad30dc5db560a01ce629 /interface_setup

COPY b2b2108b9cb798f4d00a3d186cldadbd /var/www/html/index.html

COPY b4496baf4c2b06bbf99c556e£50347df /etc/nginx/sites-available/default

CMD ["/start.sh"]

FROM and ARG The first line in the file, FROM, defines what image to use as the base for the container.
The hash following was the name given to beforementioned the dummy image. The next line sets the
DEBIAN_FRONTEND environment to noninteractive. This variable tells the apt-get utilities to skip or
use default values for any interactive prompts since there is no way to interact with the container when

it is building. If apt-get prompts for user inputs, the building process will stop there indefinitely.

The RUNs The other commands following, except the lines related to start.sh, seedemu_sniffer and
seedemu_worker, are generated from the physical node information. The RUNs are generated from the
list of build commands of nodes. The build commands can either be added by the user manually or
automatically by layers. For example, the two apt-get commands are generated by the base layer by

checking software added to nodes with the addSoftware call.

The COPYs The COPY statements copy files from the current folder into the container. The files are
generally added to the node using the setFile API. Files can either be added by the user manually or
by a layer. Docker compiler saves the content of files as real files on the host, using the MD5 hash of
the file’s path inside the container as names. The docker compiler then adds COPY statement to copy the

files into the containers.

Files added by the docker compiler Three files are added to the physical node by the docker

compiler: start.sh, which contains all the start commands of the node and server as the entry point of

55

the container, seedemu_sniffer, which backed the sniffer feature of the web Ul, and seedemu_worker,
which allows the web Ul to execute commands directly on nodes, generally for obtaining information.

Details of the web UI are described in the web UI section.

Fixing the reverse path filter In order to allow asymmetric routing inside the emulation, the reverse
path filter must be disabled or configured to use loose mode. To disable reverse path filter, one will
change the /proc/sys/net/ipv4/conf/<interface>/rp_filter sysctl item. Note that the base layer
renames the interface to the names of the networks, so there is no way to set the rp_filter sysctl
item using the sysctl option in the docker-compose configuration. It also appears that setting the
default/rp_filter value using sysctl option in docker-compose configuration does not work. The
default option is supposed to apply to all newly-created interfaces. Renaming interfaces count as
deleting them and re-creating them, and the default option should apply. However, it would appear
that only changing the default option directly on the host kernel has the desired effect. Therefore, the

docker compiler adds commands to disable rp_filter on all interfaces at the end of start.sh.

The tail -f /dev/null command The last command in the start.sh is also added by the docker
compiler. The command is tail -f /dev/null. The command tail -f listen to changes of file and
print changes out. The /dev/null file is a character device that never changes. Therefore, the command
merely hangs forever. This is required because the docker will kill the container once the entry point

command exits.

Utilizing the caches The way the docker works is that, for each step, it builds an intermediate
container. If the Dockerfile of two containers share the same steps until a certain point, the shared
steps will only be executed once. To make use of this caching behavior and speed up the building, the
docker compiler groups apt-get calls into different steps. The most commonly used software will be the
first step. This makes sure all other nodes that share the same set of software will have those installed in
one cached step. The second step installs the set of second mostly referenced software, and so on. This

is the reason why in the Dockerfile of listing 19 there are two apt-get calls.

6.1.2 Network compilation

Networks are compiled directly to objects in the network section of the docker-compose.yml.
Self-managed network One limitation with docker is that no two networks can share the same or
have an overlapping prefix. This limits the use case of the emulator, especially if one wants to try BGP

hijacking or set up anycast in the emulation. In order to mitigate the issue, the selfManagedNetwork

option is added to the docker compiler. The idea behind the option is that since the docker networks

56

are Linux bridges, nothing stops one from changing nodes to use different IP addresses at run time.
And that is what the docker compiler does to deal with the limitation. Instead of assigning the
actual prefix to the network, it generates a dummy subnet from a user-defined range. It then adds a
script to the start script of every node to change the IP addresses to the “real” IP addresses. The
reason to have the dummy subnet range user-definable is that the dummy subnet must not overlap with
the real subnet. The way docker adds firewall rules makes it also look at the traffic that traverses the
bridge. If the source IP address is part of the prefix on the bridge, docker tries to perform NAT on it if
the destination address is not also part of the prefix on some bridge. This means if the source address
overlaps with the dummy range while the destination address does not, docker will perform NAT and

breaks the connection.

6.1.3 Custom images

The other feature offered by the docker compiler is the custom image feature. The custom image feature
allows one to use any base images for nodes. By default, the base image used is ubuntu:20.04. Generally,
the image should be Debian-based since the docker compiler is expecting the apt-get command to be
available. The use case of custom images is that one may want to customize images or have some software
pre-installed in images. This also allows one to reference local images with all required software installed

to enable running the emulation completely offline.

Image election The way the custom image works in the docker compiler is that the user will provide
a list of images to the compiler. Each image will have an image name, a list of installed software on
the node, and a priority value. When compiling nodes, the docker compiler will compare the list of
pre-installed software in the image and the list of requested software by the node. The image with the
least missing software will be picked as the image to use for the node. If multiple images have the same

number of missing software, then the one will the highest priority is picked.

Forced image In some cases, one may want to use a single image for all nodes. The docker compiler
offers the forceImage to force the docker compiler to consider only the given image as the candidate

when selecting images for nodes.

6.2 Other compilers

There are also variants of the docker compiler and a special graph compiler. This section covers them.

6.2.1 The distributed Docker compiler

The distributed docker compiler is a variant of the docker compiler. It allows one to run the emulation

distributedly. Each autonomous system can run on its individual host, and the autonomous systems

57

connect with each other using docker swarm networks. Swarm networks are overlay networks that allow
containers in different docker hosts within the same customer to establish layer two communications
between each other.

The distributed docker compiler re-uses the methods from the docker compiler to compiler all nodes,

with the following exceptions:

e Instead of having all nodes saved under the same folder, the node folders are grouped by their
autonomous system numbers. Each autonomous system folder has one docker-compose.yml for

nodes within the autonomous system.
e All Internet exchanges are saved into the same folder and share one docker-compose.yml.

e Instead of regular bridges, the Internet exchange networks are now docker swarm overlay networks.

Overlay networks are global to the entire cluster; any container within the swarm can join it.

e Instead of having nodes connected to a local network for Internet exchange, the distributed docker
compiler connects the swarm network created for exchange. Regular local networks are still local

bridges local to the cluster node.

The setup allows one to break down large emulations and distribute the load across different docker

hosts.

6.2.2 Graphviz Compiler

The Graphviz compiler is not a real compiler. Instead, it generates Graphviz dot files for various
things, including layer two connections for all autonomous systems and for the entire emulation, peering
relations, IBGP meshes, Internet exchanges, and more. It is useful if one wants to generate some graph

to document the emulation they built.

7 The web Ul

Also included with the SEEDEMU framework is the web-based user interface for the docker compiler.
The web UI allows one to view the topology map of the emulation, attach to terminals of the nodes,
perform quick actions like inspecting and toggling BGP peers, and visualize packet flows in real-time
using the BPF expressions.

Figure 4 outlines the overall structure of the web UL User visits the frontend pages using their
browser. The pages are just static pages; there are no server-generated contents on the page directly.
The pages then use JSON API and WebSocket to communicate with the backend. The backend handles

packet sniffing, console sessions, and command execution. The backend also retrieves metadata provided

58

User

Browser

Front end pages

JSON API Node/Net details WebSocket Console sessions, tcpdump results
Node Labels
Back end server Docker
Metadata
Controller Sniffer Session Manager
Run commands... tcpdump Interactive shell sessions

Docker containers...

Figure 4: Structure of the web UI

by the docker compiler to reconstruct the emulation topology. The following two sections will cover the

front end and back end in detail.

7.1 The Ul

The front end is based on two other frameworks: vis.js and xterm.js. The vis. js allows easy creation
of network graphs, and xterm. js is a terminal emulator written in Typescript. The frontend itself is

also being developed with Typescript and is compiled into javascript bundles using webpack.

7.1.1 The start page

Figure 5 shows the home page when one starts the web UI. The top part is the filter and search bar;
the upper right corner is the details and quick action panel; the bottom is the log panel and the taskbar
(currently hidden), and the rest of the page shows an interactive map of the emulation topology.

The second panel at the upper right corner allows one to record and replay packet flow on the web

UI. The details will be introduced later.

7.1.2 Node details and quick actions

The second panel at the upper right corner shows details about the currently selected node. Figure
6 shows how the panel may look like when one selects a node. The details include the container 1D,

autonomous system number, physical node name, role, and IP addresses. If the node is a router node,

59

Replay stopped.

L]
O - E—

n-nu-

SOy 1621neld- <hn7\mh,_‘

Figure 5: The start page of the web UI

IRouter: 2/r100
ID: 8545b1554a68
ASN: 2

Name: rl00

Rele: Router

IP addresses

i%100: 10.100.0.2/24
net_100_101: 10.2.0.254/24
net_100_105: 10.2.2.254/24

BGP sessions
p_rsl00: E

ibgp3: Established

Actions
Launch console
Disconnect
Befresh

Figure 6: Node details and quick actions

one can also toggle BGP peers directly on the web UL It also allows one to launch a web-based terminal

emulator for the node or disconnect the node from the emulation.

7.1.3 Packet flow visulization

One may also visualize packet flows in the emulator using the BPF expression. Figure 7 shows how
one may visualize ICMP packets in the emulation using the filter feature. In the figure, one node is
sending ICMP ping to another node. Whenever nodes in the emulation get a packet that matches the
BPF expression (icmp, in this case), the node will be highlighted for a short amount of time. The path
highlighted in the figure appears to form a loop, but it is, in fact, caused by asymmetric routes. The best

path selected by BGP from the ping sender to the ping responder and the path from the ping responder

60

L - —

: google.com

Figure 7: Packet flow visualization

back to the sender is different. One can set more specifically matching filters (for example, one may
also match against source IP) to see traffic in only one direction. Alternatively, one may also record the
events and play them back at a decreased speed. With the slower speed, it is possible to observe that
packets first travel to the destination from one path, and the return traffic takes another path.

The bottom part of Figure 7 is the log panel and taskbar. Log panel is an expandable panel that
shows the output from the packet capture filter. The tasks bar shows a list of opened console windows.

It allows one to minimize consoles to the taskbar, so they can have a clean workspace.

7.1.4 Replay and recording

As one can see from Figure 7, the packet capture shows up as an entire connected line on the map. This
is because packet forwarding is very fast. Sometimes it may be helpful to see how packets travel from
hop to hop. The recording feature allows one to do so. Figure 8 shows how the web UI looks like during
the replay. Only one packet is shown at a time. A user-configurable delay is added between each packet.
Figure 9, 10, and 11 shows the controls of the replay feature.

Figure 9 shows the playback controls when idling. The first button will start recording events
happening on the map. The previous recording, if one existed, will be overwritten. Figure 10 shows the
controls during recording. The second button will start the playback mode. Figure 11 shows the controls
in playback mode.

Figure 10 shows the playback controls when recording. When recording, clicking the first button
again will exit record mode.

Figure 11 shows the panel when the recording is being played back. The first button is the record

button. It is disabled in the playback mode. The second button is the play and pause button. When

61

Figure 8: Replaying packet flow

Replay stopped.

event interval (ms) [200

Figure 9: Replay controls: stopped

not in playback mode, clicking the play button enters the playback mode. In playback mode, live packet
captures are not shown, and the button will toggle between play and pause. The third button exits
playback mode. The fourth and fifth button allows one to one-step between the recorded events (i.e.,
packets). The slider below the controls will allow one to seek and jump between events. The event
interval input allows one to set the time in milliseconds to wait between each event. Interval can only

be changed when the playback is stopped or paused.

7.1.5 Node search

In large emulations, it is easy to miss nodes since there are a large number of them. The second tab
on the filter bar allows one to search for nodes in the emulation. The keywords can be the name of the
node, the autonomous system number of the node, the role of the node, or the IP addresses of the node.
If a search match multiple nodes, one also has the option to highlight all of them on the map. Figure 12

shows how one may search for nodes.

62

Recording events...

event interval (ms) [200

Figure 10: Replay controls: recording

Playing: 164/606 event(s) left.
I] + +

O ——

event interval (ms) 200

Figure 11: Replay controls: playing

A515(]

AS150 press enter to show all matches on the map..
Network: 150/net0 10.150.0.0/24

Router: 150/router0 10.150.0.254/24, 10.100.0.150/24
Host: Root-B 10.150.0.72/24

Host: 150/webservice 0 10.150.0.71/24

Figure 12: Search for nodes

63

® [[® = | 163/webservice_0
o wedees

Figure 13: Console window actions

7.1.6 Console windows

Each console window also has a few action buttons one can use. Figure 13 shows the buttons. From left
to right, the first button allows one to close the console window. The console session will keep running
even after the window is closed; the reasons behind this decision will be detailed later in the backend
section. The second button allows one to minimize the window into the taskbar. The third button allows
one to “pop-out” the console window into a separate browser window. The fourth button allows one to
reload the console window; it is also possible sometimes that the WebSocket connection to the backend
breaks. A simple reload helps the connection to re-establish. One may also use the reload button to
restart the console session when they log out of the console. The last button allows one to toggle input
broadcast to the window. When multiple windows have input broadcast enabled, inputting to any of the

windows with broadcast enabled will duplicate the input into all other windows with broadcast enabled.

7.2 The backend

The backend of the web client hosts the frontend webpages, APIs, and WebSocket endpoints for the fron-
tend. It is also developed with Typescript and uses the dockerode and express framework. The former
provides an easy-to-use API wrapper for the docker socket; the latter is a web application framework.
The backend automatically discovers the docker control socket by looking at the DOCKER_HOST envi-
ronment variable, and trying the default settings for docker if the environment is not set. The backend

is built from a few different parts: the API server, the sniffer, the controller, and the session manager.

7.2.1 The API server

The API server provides RESTful APIs for the frontend to obtain information about nodes and networks
in the emulation. The node and network information are added by the docker compiler. Metadata like
the node’s name, display name and description of nodes, list of connected networks, and IP addresses in
the networks are all attached to the containers using labels. Set of labels attached to a node may look

like this:

Listing 20: Node labels

org.seedsecuritylabs.seedemu.meta.asn: "171"
org.seedsecuritylabs.seedemu.meta.nodename: "router0"
org.seedsecuritylabs.seedemu.meta.role: "Router"
org.seedsecuritylabs.seedemu.meta.net.0.name: '"netO"
org.seedsecuritylabs.seedemu.meta.net.0.address: "10.171.0.254/24"
org.seedsecuritylabs.seedemu.meta.net.1l.name: "ix105"

64

org.seedsecuritylabs.seedemu.meta.net.1.address: "10.105.0.171/24"

And, set of labels attach to a network may look like this:

Listing 21: Network labels

org.seedsecuritylabs.seedemu.meta.type: "global"
org.seedsecuritylabs.seedemu.meta.scope: "ix"
org.seedsecuritylabs.seedemu.meta.name: "ix101"
org.seedsecuritylabs.seedemu.meta.prefix: "10.101.0.0/24"
org.seedsecuritylabs.seedemu.meta.displayname: "San Jose-101"
The labels above are accessible through the docker control socket. The API server takes advantage of

these labels attached to each node to provide the metadata as a structured JSON object to the frontend.

The front end then uses this information to reconstruct the topology and draw the topology as a map.

The controller The controller provides some additional sets of APIs to the API server. The APIs
provided by the controller are more “dynamic” in the sense that they allow fetching information by
running commands on the node. The controller provides support for the BGP sessions and network
connection toggling feature. Those features require a piece of software, worker, to be running on the
node. The controller talks with the worker using the docker API by spawning a new instance of the
worker. The worker program is installed on all nodes by the docker compiler. Details about the worker

are in the next section.

The sniffer The sniffer feature allows one to perform packet capture on all nodes within the emulation.
It works by spawning new instances of tcpdump on all nodes, using the user-defined filter. The sniffer
is the feature that enables the visualization of packet flows on the front end. The idea behind the
visualization is, in fact, very simple. If a node receives a packet matching the given filter, the tcpdump
programs will print out new lines. When the front end sees these lines, it flashes the corresponding
nodes. However, networks themselves are not nodes, and therefore, one cannot run tcpdump directly on
them. To be able to flash both the network and the nodes, the frontend also collects MAC addresses of
all nodes in all networks. When the front end sees a packet from or to some MAC addresses belonging

to a known network, it flashes the network.

The session manager The session manager manages console sessions for containers. The docker APIs
for spawning new programs inside containers do not have the ability to terminate the spawned programs
once they are started unless the program voluntarily exits. The session manager ensures that at most
one session is started for each container. If a session to a container already exists, it will return the old
session instead of creating new ones. It also monitors the sessions, so it knows to start a new session
upon request if the old one dies (generally caused by the user manually exiting the shell). Having only

one session for each node and keeping them running in the background also means if the front end exits,

65

one can re-open the front end and continue where they left off. It also prevents launching too many

sessions at the same time.

7.2.2 The worker

The worker program is a piece of software running on the node itself to allow the execution of arbitrary
commands by the backend. Features like disconnecting nodes from networks, listing BGP peers and their
status, and toggling BGP sessions are all based on the worker. The worker is required because when
running commands spawning in the shell session spawned by the docker, there will be no data boundaries.
The worker allows the backend to assign a task ID to every commands the backend requested and return
the execution result with the task ID and data boundaries. The execution is also done asynchronously.
The backend sends the command request out, registers a handler to listen for the response, and continues
to serve other requests.

One may argue that it is possible to spawn a new session for every command requested - it is,
however, very costly the spawn a new session and slows down the backend significantly. It also means
some commands may not work well, as some of them were expecting to output to a pseudo-terminal,

which requires additional handlings.

8 Case study

8.1 Simple BGP setup

This section is going to explore the basics of emulation building with a simple emulation scenario. In
this section, three autonomous systems (AS150, AS151, and AS152) and one Internet exchange, 1X100,
will be created. The three autonomous systems will each originate a single /24 prefix and peer with each
other at IX100. They will also host one single web server within their networks. The complete code for

this setup is available in listing 84 in the appendix.

8.1.1 Import and create required components

Listing 22: Importing components

from seedemu.layers import Base, Routing, Ebgp
from seedemu.services import WebService
from seedemu.compiler import Docker
from seedemu.core import Emulator, Binding, Filter
Listing 22 shows the code required to import the components in the simple BGP setup example. It
imported four layers:

e The Base layer provides the base of the emulation; it describes what hosts belong to what au-

tonomous system and how hosts are connected.

66

e The Routing layer acts as the base of the routing protocols. It does the following: (1) installing
BIRD Internet routing daemon on every host with the router role, (2) providing lower-level APIs
for manipulating BIRD’s FIB (forwarding information base) and adding new protocols, creating
pipes and other supporting features, and (3) setting up proper default route on non-router role

hosts to point to the first router in the network.
e The Ebgp layer provides APIs for setting up External BGP peering.

e The WebService layer provides APIs for installing the nginx web server on hosts.

In order to compile the emulation into docker containers, the Docker compiler is imported. In order
to build the emulation, the core Emulator class is imported. And to facilitate virtual node binding for

the web services that will be hosted later, Binding and Filter is imported.

Listing 23: Initializing components

emu = Emulator ()
base = Base()
routing = Routing()
ebgp = Ebgp()

web = WebService()

Once the classes are imported, initialize them as shown in the listing 23.

8.1.2 Create an Internet exchange

To enable BGP peerings, one can either create an Internet exchange or connect two routers in different
autonomous systems using a cross-connect. In order to simplify the setup, this section will use an Internet

exchange to allow all autonomous systems to peer with each other.

Listing 24: Creating Internet exchange

base.createInternetExchange (100)

The Base: :createInternetExchange function call creates a new Internet exchange. By default,
it creates a new global network name ixNNN with network prefix of 10.NNN.0.0/24, where NNN is
the ID of the Internet exchange. The exchange network can later be joined by router nodes us-
ing the Node::joinNetwork function call. One may optionally set the IX LAN prefix with the pre-
fix parameter and the way it assigns IP addresses to nodes with the aac parameter when calling
createlnternetExchange. Listing 24 shows how to create an Internet exchange with ID 100. With

the call, Internet exchange 100 is created. It creates the network ix100.

67

8.1.3 Create an autonomous system

Creating a new autonomous system in the emulator is a multistep process. It consists of the following

steps:

e Creating the autonomous system object.

Creating an AS-internal network to connect router and hosts.

Creating router.

Creating host.

e Creating a virtual node and hosting service on it.

Binding the service to the host.

Creating the autonomous system object. The very first thing one would do to create new au-
tonomous systems is to invoke the createAutonomousSystem function of the base layer. Listing 25 shows
how one would call the method. The call returns an AutonomousSystem class instance, and it can be

used to further create hosts and networks in the autonomous system.

Listing 25: Creating autonomous system

as150 = base.createAutonomousSystem(150)

Creating an AS-internal network to connect router and hosts. The logical next step to take
when creating an autonomous system is to create an internal network for it. However, creating internal
networks is completely optional. One can create a stub autonomous system without any networks by
creating a single router and nothing more in the autonomous system. An example of such an autonomous
system can be an autonomous system that is used to perform BGP hijacks. To create a new internal
network, one would use the AutonomousSystem: : createNetwork call.

The AutonomousSystem: : createNetwork calls create a new local network (as opposed to the net-
works created by Base: :createInternetExchange), which can only be joined by nodes from within the
autonomous system. Similar to the createInternetExchange call, the createNetwork call also auto-
matically assigns network prefixes; it uses 10.asn.id.0/24 by default, where the asn is the autonomous
system number, and id is a self-incrementing number. The createNetwork API call also accept prefix
and aac parameter for configuring prefix and setting up auto address assignment.

By default, the network created by the call will have the direct attribute. This attribute instructs
the routing daemon (if it exists; i.e., if the Routing layer is added to the emulator.) to generate a route

matching the interface route in its routing information base. This route will then be re-distributed into

68

other routing protocols, like BGP, so that the BGP peers can learn the route and route traffic destinating
the network to the router. This behavior can be disabled by passing direct = False to the function
call.

Listing 26 shows how one can create a new internal network with the call. In the next few sections,
this network will be used for connecting the node hosting service and the edge router of the autonomous

system.

Listing 26: Creating an internal network
as150.createNetwork('net0')

Creating router. Once the internal network is created, one would need to create a router that con-
nects the internal network and the Internet (in this case, the “Internet” is IX100, where the other two
autonomous systems will be located.) For the router to route traffic between the Internet network and
the Internet exchange, it will need to connect to both of the networks.

One can create the router and have it join both networks with three API calls, chaining together in
one line, as shown in the listing 27. The AutonomousSystem: :createRouter takes one parameter, the
name of the new node. The call creates a new router node with the given name. The call then returns
a Node object on success.

The Node: : joinNetwork call connects a node to a network. It first searches through the local
networks, then global networks. Internet exchanges, for example, are considered global networks. It can

also optionally take another parameter, address, to override the auto address assignment.

Listing 27: Creating a router

as150.createRouter ('router0') . joinNetwork('net0') .joinNetwork('ix100")

Creating host. In order to host services within an autonomous system, one would need to create a
host node. Creating a host is not much different from creating a router.

The AutonomousSystem: :createHost API also takes one parameter, name, which is the name of
the host, and it will also return a Node instance on success. Listing 28 shows how one would create a

host named web and have it join the internal network with name netO.

Listing 28: Creating a host
as150.createHost('web') . joinNetwork('net0')

Creating a virtual node and hosting service on it. Since now the router, host, and network have

been created, the logical next step to take is to install the service on the host node.

69

As a refresher, the SEEDEMU framework does not install services directly on a host node. To
install a service, one would first install the service on a virtual node. Virtual nodes are not real nodes in
the sense that they are just an internal string in the Service interface for keeping track of changes to
make. Consider them as the “blueprint” of a physical node. They are decoupled from the physical node,
making reusing them much easier. Whenever one makes changes to the virtual nodes, the “blueprint”
is changed. Eventually, a virtual node needs to be mapped to a physical node using the binding system
to apply all the configurations and changes in the “blueprint” to the physical node. Physical nodes are
real nodes; they are the nodes created by the AutonomousSystem: : createHost API.

In order to install web service on the node created before, one would need to first use the Service: :install
call. WebService class derives from the Service class, so it also has the install method. The install
method takes a virtual node name and install the service on that virtual node. Example of this is shown

in listing 29.

Listing 29: Installing service on virtual node
web.install('web150')

Binding the service to the host. To let the emulator knows where to bind the virtual node web150
created earlier to, one would add a Binding to the emulator. To bind a virtual node, one would need
Binding and Filter. Binding allows one to define binding for a given virtual node name, or a pattern of
virtual node names. Filter allows one to define some constraints on what physical nodes are considered
as binding candidates. Listing 30 shows how one can bind the virtual node web150 to the physical node

created earlier.

Listing 30: Creating binding
emu.addBinding(Binding('web150', filter = Filter(nodeName = 'web', asn = 150)))

Note that this is only one example of binding the virtual node to the physical node. Since there
is only one host node in AS150, the nodeName constraint can be safely omitted. Other constraints, like
network prefix and IP address, can be used to select candidates, which were discussed in the binding
section earlier.

At this point, an autonomous system with one internal network, one host node, one router, and
connected to IX100 is created. To create the rest of the autonomous systems, one can copy the code

above two more times and change the autonomous system number.

8.1.4 Set up BGP peerings

With all autonomous systems created, the next step is to set up BGP peerings, so they can exchange

routes with each other. Setting up BGP peering is done at the EBGP layer. Listing 31 shows how to

70

peer AS150, AS151, and AS152 at the Internet exchange IX100 with the route server.

Listing 31: Set up BGP peerings
ebgp.addRsPeer (100, 150)

ebgp.addRsPeer (100, 151)
ebgp.addRsPeer (100, 152)

Generally, there are two ways to set up BGP peerings within an Internet exchange. One is with
the multilateral peering agreement (MLPA) via a route server (RS). A route server peers with every
participant in the MLPA and send routes received from one peer to all other peers, without modifying
the AS_PATH and NEXT_HOP attribute (some outliers in the real world do modify the AS_PATH attribute,
but it is the minority, and as long as the NEXT_HOP attribute is not changed, the effect of an RS is still the
same). This effectively creates full mesh peering between all autonomous systems connected to the route
server. Another peering option is to set up a private one-to-one session. This example uses RS-based

MLPA peering.

8.1.5 Render and compile the emulation

The last step one would do to finish building the emulation is to render and compile the emulation. The
rendering process is where all the actual “emulation construction” happens. Software is added to the
nodes, routing tables and protocols are configured, and BGP peers are configured. Listing 32 shows how

to add layers to the emulator and render them.

Listing 32: Adding layers to emulator and render them

emu.addLayer (base)
emu.addLayer (routing)
emu.addLayer (ebgp)
emu.addLayer (web)

emu.render ()

After all the layers are rendered, all the nodes and networks are created. They are still stored
using internal data structures (i.e., the core classes). The intermediate representations will need to be
“compiled” down to something the emulation platform, like docker, can understand. The name of such
a process is called compilation. The main focus of the framework is the docker compiler backend. As
such, this example will use the docker compiler.

Listing 33 shows how one would invoke the docker compiler. The docker compiler would generate
all the docker files inside the ./output folder. The docker compiler comes with a docker-compose
configuration. To run the emulation, one can run docker-compose build && docker-compose up in

the output directory.

Listing 33: Using the docker compiler backend

emu.compile(Docker(), './output')

71

The detailed rendering and compilation logic is discussed in the rendering part in the design section.

8.2 Simple transit BGP setup

This example shows how one can create a transit provider in the emulator. AS150 will serve as a transit
for two other autonomous systems, AS151 and AS152, where AS151 will be located in IX100, and AS152
will be located in IX101. As most part of this example is the same as the simple peering example, the

detailed discussions will be omitted. Full code of this example is available in the appendix, listing 85.

8.2.1 Import and create required components

Two new layers are required for this example:

e IBGP layer: The IBGP layer setup full-mesh IBGP peering between all reachable internal routers.

e OSPF layer: The OSPF layer configure OSPF routing on all routers within the autonomous system.

8.2.2 Create a transit autonomous system

A transit autonomous system peers with other autonomous systems at multiple Internet exchange points,
pulling traffic from one place to another. In order to connect the BGP routers at these different locations,

a transit AS typically has multiple internal networks.

Create AS150 and its internal networks To get started, AS150 needs to be created. Some internal
networks to support transiting traffic from one place to another should also be created. One can use
only one network to connect the two different locations, but that is rarely the case in the real world.
Multiple internal networks are created to make the network look realistic. Listing 34 shows how one can

create the autonomous system and the internal networks.

Listing 34: Create AS150 and its internal networks

as150 = base.createAutonomousSystem(150)
as150.createNetwork('net0')
as150.createNetwork('netl')
as150.createNetwork('net2')

Create routers For AS150, four routers should be created to connect two sites. The two of them, R1
and R4, will be the provider edge routers that connect to the Internet exchange and provide services to
the other autonomous system. The other two of them, R2 and R3, will be regular provider routers that
connect to no customers and carry transit traffic between R1 and R4. This enables AS150 to transit
traffic between IX100 and IX101. Listing 35 shows how one can create the routers and connect them to

the networks.

72

Listing 35: Create and connect routers to networks

as150.createRouter('rl').joinNetwork('net0') .joinNetwork('ix100")
as150.createRouter('r2').joinNetwork('net0').joinNetwork('netl')
as150.createRouter('r3').joinNetwork('netl').joinNetwork('net2')
as150.createRouter('r4') . joinNetwork('net2').joinNetwork('ix101")

This example uses OSPF and IBGP as its internal routing option. IBGP and OSPF layers do
not need to be configured explicitly; they are by default enabled on all autonomous systems. One will
need to explicitly disable IBGP and OSPF for a network or autonomous systems should they want
to. The detailed behavior of the IBGP and OSPF layers is described in the design section. One can
alternatively use MPLS instead of the OSPF and IBGP internal routing option, which is detailed in the

next subsection.

8.2.3 Set up BGP peering

In this example, the peering between AS150 and AS151/AS152 is done over Internet exchange. It is
generally a less common practice to provide transit service over an Internet exchange; most providers
will require a direct connection to them to provide transit services. This example provides transit service

directly over Internet exchange to simplify the setup.

Listing 36: Configure BGP peers

ebgp.addPrivatePeering (100, 150, 151, abRelationship = PeerRelationship.Provider)
ebgp.addPrivatePeering (101, 150, 152, abRelationship = PeerRelationship.Provider)

Listing 36 shows how one would configure peering between AS150 and AS151/AS152. The line
ebgp.addPrivatePeering (100, 150, 151, abRelationship = Provider) configures peering between
AS150 and AS151 at IX100, where AS150 is AS151’s provider. Details about the peering relationship

are discussed in the design section.

8.2.4 Save the emulation for later use

This example will be used as the base of a few other examples later. To serialize the emulation as a

single binary file, one can use the Emulator: :dump API. Listing 37 shows how one can invoke the API.

Listing 37: Dumping the emulation

emu. dump (' base-component.bin')

The API call above dumps the emulation to a file named base-component.bin, which can be used
later. The emulation can also be rendered, compiled, and executed on its own. The process is the same

as in the last example. However, it should be noted that dump must happen before the render call.

73

8.3 Create a MPLS-based transit autonomous system

As an alternative to the IBGP and OSPF setup, transit providers may use MPLS as their internal
network option. With MPLS, non-edge routers do not need to carry the BGP routing table at all.
Non-edge routes only need to keep track of a small amount of MPLS labels, significantly reducing the
resources needed on non-edge routes. MPLS also offers the capability to traffic engineering, where the
traffic does not follow the best path elected by IGP but rather route traffic around traffic hot-spots
that satisfies some given conditions like bandwidth or latency. However, note that no traffic engineering
support is added in the SEEDEMU framework. Details about how the MPLS layer works are discussed
in the design section.

The full code for this example is at appendix, listing 86.

8.3.1 Host system support

MPLS requires support from the Linux kernel; for this example to work properly, one will need to load

the MPLS kernel module on the emulator host with the following command, as root:

Listing 38: Loading the MPLS module

modprobe mpls_router

8.3.2 Import and create required components

Only one new layer, the MPLS layer, is required for this example. Unlike IBGP and OSPF layers, MPLS
is not enabled for an autonomous system unless explicitly configured. MPLS and the IBGP/OSPF setup
are also mutually exclusive. One cannot use both setups for the same autonomous system. One can,
however, use the same setup for different autonomous systems in the same emulation. The MPLS layer

automatically disables OSPF and IBGP for MPLS-enabled autonomous systems.

8.3.3 Create a transit autonomous system
Configure MPLS Unlike OSPF and IBGP, MPLS needs to be explicitly enabled for an autonomous

system. This can be done with the Mpls::enableOn API:

Listing 39: Enabling MPLS on AS150
mpls.enableOn(150)

Here, only r1 and r4 are edge routers; thus, IBGP session will only be set up between them. r2

and r3 will only participate in OSPF and LDP. The topology looks like this:

Listing 40: MPLS topology
| AS150's MPLS backbone |

| / \ |
as151 -|- as150_r1 -- as150_r2 -- as150_r3 -- as150_r4 -|- as152

Since r2 and r3 don’t carry the tables from AS151 and AS152, traceroute will look like this:

Listing 41: Traceroute result
HOST: 0e58e675b98b Loss)% Snt Last Avg Best Wrst StDev

1.]-- 10.152.0.254 0.0% 10 0.1 0.1 0.1 0.1 0.0
2.|-- 10.101.0.150 0.0% 10 0.1 0.1 0.1 0.2 0.0
3.|-- 777 100.0 10 0.0 0.0 0.0 0.0 0.0
4.|-- 777 100.0 10 0.0 0.0 0.0 0.0 0.0
5./-- 10.150.0.254 0.0% 10 0.1 0.1 0.1 0.2 0.0
6.l-- 10.100.0.151 0.0% 10 0.3 0.2 0.1 0.3 0.1
7.1-- 10.151.0.71 0.0% 10 0.2 0.2 0.1 0.3 0.0

The two missing hops are r2 and r3. One can also validate that the network is indeed running on

MPLS by tcpdump:

Listing 42: tcpdump result

root@d5d8ad0d6d48 / # tcpdump -i netl -n mpls

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on netl, link-type EN1OMB (Ethernet), capture size 262144 bytes

19:39:33.831880 MPLS (label 21, exp O, [S], ttl 61) IP 10.152.0.71 > 10.151.0.71: ICMP echo
request, id 123, seq 1, length 64

19:39:33.832051 MPLS (label 19, exp O, [S], ttl 61) IP 10.151.0.71 > 10.152.0.71: ICMP echo
reply, id 123, seq 1, length 64

19:39:34.877246 MPLS (label 21, exp O, [S], ttl 61) IP 10.152.0.71 > 10.151.0.71: ICMP echo
request, id 123, seq 2, length 64

19:39:34.877314 MPLS (label 19, exp O, [S], ttl 61) IP 10.151.0.71 > 10.152.0.71: ICMP echo
reply, id 123, seq 2, length 64

~C

4 packets captured

4 packets received by filter

0 packets dropped by kernel

8.4 Exploring emulator features with the simple transit BGP setup

One major feature of the SEEDEMU framework is the ability to share and reuse emulations. The
following subsections will show how to reuse the base layers built in the simple transit BGP setup for

different emulation scenarios.

8.4.1 Allow real-world access to the emulation

The ability to connect to the inside of the emulation from the outside world and connect to real-world
hosts from within the emulation is an integral part of the SEEDEMU framework. In this case study,
a VPN server is configured to allow outside hosts to connect to the emulated network. A real-world
autonomous system is introduced into the emulation to route traffic outside the emulation. A real-world
autonomous system will collect the real network prefixes from the real Internet and announce them inside

the emulator. Packets reaching this autonomous system will exit the emulator and be routed to the real

7

destination. Responses from the outside will return to this real-world autonomous system and be routed

to the final destination in the emulator.

Enable remote access Most of this part is the same as the transit BGP setup, with the only difference

being:

Listing 43: Import OpenVPN remote access provider

ovpn = OpenVpnRemoteAccessProvider ()

For details about the OpenVPN remote access provider, check the feature section. Listing 43 creates
the remote access provider. To use it, one will have to pass it to the enableRemoteAccess API of the

network object. For example, to allow remote access to network net0 of AS150, one can do:

Listing 44: Use OpenVPN remote access provider

as151.createNetwork('net0') .enableRemoteAccess (ovpn)

The Network: :enableRemoteAccess call enables remote access to a network. The API takes only
one parameter, the remote access provider. Details on how to access the network with OpenVPN remote

access enabled are in the feature section.

Create real-world autonomous system A real-world autonomous system is just a regular au-
tonomous system with a real-world router in it. The first step for creating a real-world autonomous

system is to create an autonomous system object:

Listing 45: Create the autonomous system
as11872 = base.createAutonomousSystem(11872)

Once the autonomous system is created, one can start creating the router for routing traffic to the

real world. Instead of the createRouter API, one would use the createRealWorldRouter for this task.

Listing 46: Create the real-world router

rw = asl11872.createRealWorldRouter('rw')

Listing 46 shows how one can create a real-world router in AS11872 with the name rw. Details
about the createRealWorldRouter are in the feature section. This router will now fetch the prefixes
announced by AS11872 on the real Internet and announce those prefixes into the emulation. The next
step would be connecting the router to an Internet exchange so that the BGP routes can propagate in
the emulator. To join an exchange, one will need to override the auto address assignment manually. By
default, the address in the Internet exchange is assigned using the autonomous system number as the

offset. Since the offset 11,872 is out of the /24 range, the address needs to be assigned manually:

76

Listing 47: Joining the exchange
as11872.createRealWorldRouter('rw').joinNetwork('ix101', '10.101.0.118')

Other steps, like configuring BGP peers, are similar to the BGP transit case, and therefore not

repeat here. Complete code for this case is in appendix, listing 87.

8.4.2 Customizing the visualization

One may change the name shown under the nodes and networks on the web UI programmatically. One
can also attach a text description to nodes and networks, which will be shown when the node is selected.
Each object (nodes and network) already has a name, but one may want to change them to something
more meaningful.

It is possible to set display names and descriptions of physical nodes (routers and hosts), virtual
nodes, and networks (local and Internet exchange). Setting display names and descriptions of virtual
nodes uses the virtual physical node feature, where a “fake” physical node is created for the given virtual
node name. Settings on the “fake” physical node are copied to the real physical node upon binding.

Listing 48 shows how one may set display names and descriptions.

Listing 48: Setting node/network display name and description

set name/description for physical nodes

as151 = base.getAutonomousSystem(151)

as151.getRouter('router0') .setDisplayName('AS151 Core Router')
as151.getRouter('router0') .setDescription('The core router of AS151')
as151.getHost ('web') .setDisplayName('example.com')
as151.getNetwork('net0') .setDisplayName('AS151 Main Network')

set name/description for virtual node
as150.getVirtualNode('web150') .setDisplayName('as150.net')

set name/description for IX network

ix100_lan = base.getInternetExchange(100) .getPeeringLan()
ix100_lan.setDisplayName('Seattle')
ix100_lan.setDescription('The Seattle Internet Exchange')

ix101_lan = base.getInternetExchange(101).getPeeringLan()
ix101_lan.setDisplayName('New York')
8.4.3 Components and emulator merging

One major feature of the SEEDEMU framework is the ability to re-use previously built emulations.
Recall that at listing 37, the emulation was saved to a file named base-component.bin. This section

covers how one may load and work with the dumped emulation.

Create a new emulator and load the dump file The first step to load any existing emulation is

to create a new emulator and invoke the load method on the dumped file:

7

emu

Listing 49: Load dumped emulation

= Emulator()

emu.load('../0l-transit-as/base-component.bin')

Once the emulation is loaded, one may make changes to it. To make changes to existing layers, one

can use the getLayer call like this:

base: Base

Listing 50: Retrieving layers from emulator

emu.getLayer ('Base')

ebgp: Ebgp = emu.getLayer('Ebgp')

The layer retried from the call can be interacted with normally. Listing 51 shows how one can make

changes.

Listing 51: Interactive with the layers

get an autonomous system from base layer, and a create new host.
as151 = base.getAutonomousSystem(151)
as151.createHost ('web-2').joinNetwork('net0')

add new peerings

ebgp.addPrivatePeering (100, 150, 153, abRelationship

PeerRelationship.Provider)

ebgp.addPrivatePeering (100, 151, 153, abRelationship = PeerRelationship.Peer)

Merging emulations It is also to merge two emulator objects. The two emulators can come from

pre-built emulations (i.e., loaded using the load API) or be newly created using code. Each emulation

can have its own autonomous systems, Internet exchanges, networks, virtual nodes, and more. The

SEEDEMU framework will try to merge them automatically.

Generally, the SEEDEMU framework can automatically merge:

e Emulations that have no common layers at all. For example, if one emulation has the base layer,

routing layer, OSPF layer, and BGP layer, and the other one has DNS service layer, web ser-
vice layer, and the Ethereum layer. SEEDEMU framework can merge the two emulations fully
automatically. Users may still need to create virtual node bindings to allow the services to be

installed.

Emulations that have no common autonomous systems at all. For example, if one emulation has
AS150 and 1X100, and the other emulation has AS151 and, also, IX100. SEEDEMU framework
can merge the two emulations fully automatically. However, to “connect” the emulation, one may
need to configure the EBGP layer to have AS150 and AS151 peer with each other in the new
emulation. Or, if they have both already configured to peer with the route server, there is no need

to manually add peerings.

Emulations with no overlapping virtual nodes at all. SEEDEMU can also handle merging most

of the service layers automatically, as long as there are no conflicting virtual node names. When

78

merging, one can optionally set a prefix to be prepended to every virtual node name of one of
the targets to prevent conflicts. Some services, like DNS services, may fail to merge if there are
conflicting records (for example, if aaa.example.com is a record in one emulator but is hosted as

a zone in the other emulator).

The next few sections will show how one may use the merging feature extensively to enable many

different re-use use cases.

Listing 52: Merge emulations

emuA = Emulator()
emuA.load('base-component.bin')

emuB = Emulator()
emuB.load('dns-infrastructure.bin')

emuC = Emulator()
emuC.load('blockchain.bin')

emu = emul.merge (emuB) .merge(emuC, mergers = DEFAULT_MERGERS, vnodePrefix = 'eth-')

Listing 52 shows how one may merge the emulations. The merge call takes three parameters.
The first is the other emulator. This emulator will be merged with the current emulator. The next
two parameters are optional. The first one is a list of mergers. The Merger class handles merging of
individual layers if there are two layers of the same type in two emulators. The third option is the virtual
node prefix. The prefix will be prepended to all virtual nodes in the other emulator.

In listing 52, emulator A is first merged with emulator B. No mergers have been used. This assumes
there are no common layers in A and B. Then, the resulting emulator is merged with emulator C. This
time, DEFAULT_MERGERS is used as the mergers. The DEFAULT MERGERS constant is a constant list that
contains all the default merger implementations included with the SEEDEMU framework. It also adds

prefix eth- to all virtual nodes from emulator C. The final result is then stored in emu.

8.5 Complex BGP setup

The next case study sets up a more comprehensive example. It creates six Internet exchanges, five
transits, and 12 stubs. One of the autonomous systems (AS11872) is a real-world autonomous system,
which announces the real-work network prefixes to the emulator. Packets to these prefixes will be routed
out to the real Internet. Another autonomous system (AS152) allows machines from the outside to join
the emulation (via VPN), so one can interact with the emulated hosts inside the emulator using a real

host.

79

8.5.1 The helper tools

In order to speed up the creation of the emulation, the SEEDEMU framework includes some helper tools

to allow the fast creation of commonly seen topologies.

makeTransitAs The makeTransitAs tool allows one to create a transit provider in the base layer
that takes four parameters. The first parameter is the reference to the Base layer object. The second
parameter is the autonomous system number to use for the newly created provider. The third parameter
is a list of Internet exchange IDs to create routers for this provider. The last parameter is a list of
tuples, where each tuple contains two Internet exchange IDs. The makeTransitAs tool will create an
internal link between the two routers in the given Internet exchange. IBGP and OSPF will run across

all connected links, effectively turning the autonomous system into a transit provider.

makeStubAs The makeStubAs tool allows one to create a stub autonomous system. A stub au-
tonomous system does not provide transit to other autonomous systems. The makeStubAs tool takes five

parameters:

The first parameter is the reference to the emulator object. Unlike makeTransitAs, the makeStubAs
tool can also create host nodes with services on them and therefore needs to create new bindings

in the emulator.
e The second parameter is the reference to the Base layer object to create nodes and networks in.

e The third parameter is the autonomous system number to use for the newly created stub au-

tonomous system.
e The fourth parameter is the ID of the Internet exchange to join with the stub.

e The last option is a list of services to host in the autonomous system’s network. The element of
the list can either be a reference to a Service layer object or None. For each element in the list,
one host node will be created. If the element is a Service layer object reference, one new server
will be installed on a virtual node, and the virtual node will be bound to the newly created host

node. If the element is None, a host node with no service is created.

The two helpers allow one to quickly create large transits and host various services.

8.5.2 Building the topology

Creating transit The following example creates a transit, AS2, which has a presence at three Internet
exchanges (ix100, ix101, and ix102). It also creates two internal networks to connect the three BGP

routers of this transit:

80

Listing 53: Create transit
Makers.makeTransitAs(base, 2, [100, 101, 102], [(100, 101), (101, 102)]1)

One can use multiple calls to makeTransitAs to create multiple transits in the emulator.

Creating stub The following example creates a stub, AS153, which has a presence at ix101. Three

hosts will be created for this stub, one running a web service, and the other two not running any service.

Listing 54: Create stub
Makers.makeStubAs(emu, base, 153, 101, [web, None, None])

Real-world integration The example creates a real-world autonomous system AS11872, which is
Syracuse University’s autonomous system. It will collect the network prefixes announced by this au-
tonomous system in the real world and announce them inside the emulator. Packets (from inside the
emulator) going to these networks will be routed to this autonomous system and forwarded to the real
world. Returning packets will come back from the outside, enter the emulator at this autonomous system,

and be routed to their final destination inside the emulator.

Listing 55: Create real-world AS

as11872 = base.createAutonomousSystem(11872)
as11872.createRealWorldRouter('rw') . joinNetwork('ix102', '10.102.0.118")

Real-world access The autonomous system AS152 is configured to allow real-world access. This
means machines from outside the emulator can VPN into AS152’s network, and becomes a node of the

emulator. This allows outside real-world machines to participate in the emulation.

Listing 56: Allow remote access from the real world

as152 = base.getAutonomousSystem(152)
as152.getNetwork('net0') .enableRemoteAccess (ovpn)

Other details, like repetitive calls to the helpers and codes that have been demonstrated in earlier

sections, are skipped. The complete code for this example is available at appendix, listing 88.

8.6 Exploring emulator features on the complex BGP setup

The next few sections will deploy different services on the same underlying topology built from the

complex BGP setup example (the last section).

8.6.1 BGP hijacks

BGP hijack generally can be performed without making modifications to the BGP setup at all. However,

to simplify the setup, this example will create a dedicated autonomous system for performing the hijack.

81

A new autonomous system, AS199, is created to be the attacker. The attacker is connected to IX105,

and using AS2 as their upstream.

Listing 57: Add attacker to the complex BGP setup

#!/usr/bin/env python3
encoding: utf-8

from seedemu.core import Emulator
from seedemu.compiler import Docker
from seedemu.layers import Base, Ebgp, PeerRelationship

emu = Emulator()

Load the pre-built component
emu.load('../BO0O-mini-internet/base-component.bin')
base: Base = emu.getLayer('Base')

ebgp: Ebgp = emu.getLayer('Ebgp')

Create a new AS as the BGP attacker

as199 = base.createAutonomousSystem(199)
as199.createNetwork('net0')
as199.createHost ('host-0"') . joinNetwork('net0')

Attach it to ix-105 and peer with AS-2
as199.createRouter('router0') . joinNetwork('net0').joinNetwork('ix105")
ebgp.addPrivatePeerings (105, [2], [199], PeerRelationship.Provider)

Render and compiler
emu.render ()
emu.compile(Docker(), './output')

Listing 57 shows the full code for the example. It first loads the dump from the complex BGP setup
example and adds the attacker autonomous system.

Say if one wants to hijack AS153’s network, 10.153.0.0/24, they can announce two smaller prefixes
10.153.0.0/25 and 10.153.0.128/25. Any IP address inside 10.153.0.0/24 will match two IP prefixes,
one announced by the attacker and the other one announced by AS153, but the one announced by the
attacker has a longer match (25 bits, compared to the 24 bits from AS-153), the attacker’s prefix will be
selected by all the BGP routers on the Internet.

It should be noted that if the attacker announces /24, the hijack may still work in some parts of the
network, given that the attacker’s route is preferred. Also, in the real world, the longest prefix allowed
in the DFZ is /24. So, realistically, a /25 prefix will not be accepted by any of the peers, and therefore
hijacking with /25 prefixes will not work (but one can still hijack a /23 with two /24s with the same
principle). Max prefix length is not enforced by the EBGP layer.

There are also techniques, like RPKI [24], to cryptographically enforce route origin validation. RPKI
is a PKI for routing prefixes. Only resource holder has access to the PKI, and the holders can issue
certificates to authorize announcements. RPKI allows one to define the maximum prefix length and
the source autonomous system for a prefix. If a network enforces RPKI and sees a mismatch source

autonomous system or prefix length, it will discard the route. However, this still does not solve the

82

hijack issues, as the attacker can also forge autonomous system numbers. The max-length may limit the

impact to some extent, but the attacker can still archive hijack.

BIRD configuration To actually perform the hijack, one would first start the emulator. Once the
emulation is started, navigate to AS199’s router, and edit /etc/bird/bird.conf, BIRD’s configuration

file.

Listing 58: BIRD configuration for hijacking

protocol static hijacks {
ipvd {
table t_bgp;
I3
route 10.153.0.0/25 blackhole { bgp_large_community.add(LOCAL_COMM); };
route 10.153.0.128/25 blackhole { bgp_large_community.add(LOCAL_COMM); };

Listing 58 shows how one may hijack AS153’s prefix. The snippet above should be added to the
end of BIRD’s configuration file. It adds two static routes to BGP’s routing table, t_bgp. Community
LOCAL_COMM is attached to the routes so that the routes will be exported to AS199’s upstream. Once the
configuration is saved, tell BIRD to reload its configuration using the command birdc configure, and

AS153’s prefix should now be hijacked.

Testing To test if the hijack works, pick any hosts on the emulated Internet (other than hosts from
AS199 or AS153), and ping one of the AS153’s hosts. If the hijack worked, there would be no response.
To see where the packets go, one can start the web Ul and set the filter to icmp. One will see that all
the ping packets are rerouted to AS199. Next, to mitigate the damage, one can find AS199’s router on
the web UlI, select the router node, and disable its BGP peer. Traffic should be routed back to AS153

once the session at AS199 is disabled, and the ping program should also be able to see replies now.

Hijack the “real world” It will be more fun to launch such an attack on the real autonomous system,
but without doing real damages to the real world. Remember that the complex BGP setup includes one
real-world autonomous system, AS11872, in the emulation. AS11872 is announcing the real-world prefix
of AS11872 and routing traffic to the real AS11872. The emulator effectively becomes a shadow Internet.
One can easily hijack AS11872 inside the emulator and experience the effect of the hijack if it were to

happen in the real world, without affecting the real-world AS11872.

8.6.2 Deploying DNS

This section covers how one may build a portable DNS infrastructure and deploy the infrastructure on

the complex BGP setup example.

83

Building the infrastructure At its core, the DNS infrastructure is merely a set of DNS servers, where
the root servers point to the TLD servers, and the TLD servers point to individual domain servers. To

begin, install the root servers onto the virtual nodes, and host the root zone (.) on them.

Listing 59: Creating root servers

dns.install('a-root-server').addZone('.').setMaster() # master server
dns.install('b-root-server').addZone('.") # slave server

dns.install('a-com-server').addZone('com. ') .setMaster()
dns.install('b-com-server').addZone('com.")

dns.install('ns-twitter-com') .addZone('twitter.com."')

Each of the call in listing 59 creates a virtual node. Then, a zone is configured on the virtual node.
It is possible to have multiple servers hosting the same zone. In such a case, setMaster () should be
invoked to set one of the servers as the master server of the zone. It should be noted that, since the goal
is to create a portable DNS infrastructure, there should not be binding specified for these virtual nodes
(and not possible to, since there is no base layer in this emulation at all). Binding will be configured
when one wants to use this with another emulation that has a base layer.

One may also want to pre-defined some records in the zone. This can be done by first retrieving the
zone with the getZone API, then invoke addRecord method on the zone object, as shown in the listing

60. As will be soon shown, it is also possible to add A record that points to IP addresses of virtual nodes.

Listing 60: Adding records
dns.getZone('twitter.com.').addRecord('@ A 10.0.0.1"').addRecord('www A 10.0.0.2')

Dumping the DNS infrastructure Like any other emulation, the DNS infrastructure can be saved

as a file:

Listing 61: Dumping the infrastructure

emu.addLayer (dns)
emu. dump ('dns-component.bin')

Full code for the DNS infrastructure setup is in the appendix, listing 89.

Load and merge with the complex BGP setup To use the infrastructure, it needs to deploy on
another emulation that has a base layer to function. This example uses the complex BGP set up as the

base. The overall steps are:

e Load the two previously built emulations. Merge them into a new one.

e Create bindings for the DNS servers. One may create one catch-all binding with no filter to have

all DNS servers installed onto random physical nodes, configure bindings for every single node, or

84

anything in between.

e Create a DNS caching server. Clients do not perform recursive DNS lookups themselves. DNS

caching server, or recursive DNS server, must be configured inside the emulator for clients to use.

To load and merge the emulations, one may do this:

Listing 62: Merging emulations

emuA.load('../BO0-mini-internet/base-component.bin')
emuB.load('../BOl-dns-component/dns-component.bin')
emu = emul.merge (emuB, DEFAULT_MERGERS)

Next, bind the DNS nodes:

Listing 63: Binding DNS nodes

bind root servers randomly in AS171
emu.addBinding(Binding('.*-root-server', filter=Filter(asn=171)))

bind com servers randomly in AS151, net on 152, edu on 153, and cn on 154
emu.addBinding(Binding('.*-com-server', filter=Filter(asn=151)))
emu.addBinding(Binding('.*-net-server', filter=Filter(asn=152)))
emu.addBinding(Binding('.*-edu-server', filter=Filter(asn=153)))
emu.addBinding(Binding('.*-cn-server', filter=Filter(asn=154)))

for the domain servers, bind them randomly in any AS
emu.addBinding(Binding('ns-.*'))

Listing 63 only shows one way to bind the DNS servers. If one does not know the name of vir-
tual nodes or does not care about where the servers will end up, then they can just use one binding
Binding(’.*’) to cover everything. More details about the binding system are in the design section.

Next, create the recursive DNS and bind them somewhere:

Listing 64: Binding DNS nodes

ldns = DomainNameCachingService ()
ldns.install('global-dns-1")
ldns.install('global-dns-2')

emu.addBinding(Binding('global-dns-1', filter
Action.NEW)

emu.addBinding(Binding('global-dns-2', filter = Filter(ip = '10.153.0.53')), action
Action.NEW)

Filter(ip = '10.152.0.53')), action

Listing 64 uses the NEW action of the binding system. As a recap, the NEW action tries to create
node matching to filter rule instead of looking for nodes that match the filter. The action NEW is a good
fit when one wants to add something new to the existing emulation. While they can manually retrieve
the base layer, get the autonomous system object, create a host manually, then create binding for the
host to install service, the NEW action massively simplifies the process. The ip option is used here since
settings name servers for nodes require one to provide the IP address of the name server.

Last, configure nodes to use the recursive DNS created in the last step:

85

Listing 65: Set name servers
base.getAutonomousSystem(170) . setNameServers(['10.152.0.53'])

base.setNameServers(['10.153.0.53'])

One may set name servers for a single host, all hosts within an autonomous system, or all nodes
within the emulation. Listing 65 shows how one may set the name server at the autonomous system
level and at the emulation level. Settings at the autonomous system level override the settings at the
emulation level.

Once all the steps are done, add the local DNS layer to the emulator, then render and compile the
emulation. The resulting emulation will have the same topology as the complex BGP setup but is now
complete with the DNS infrastructure. The complete code for this example is in the appendix, listing

90.

8.6.3 Deploying anycast

The IP anycast technology allows multiple computers on the Internet to have the same IP address. When
another machine sends a packet to this IP address, one of the computers will get the packet. Exactly
which one will get the packet depends on BGP routing. IP anycast is naturally supported by BGP.
One of the well-known applications of IP anycast is the DNS root servers. Some DNS root servers,
such as the F server, have multiple machines geographically located in many different places around the
world, but they have the same IP address. For example, all the F servers have the same IP address
192.5.5.241. When a DNS client sends a request to this IP address, one of the F servers will get the

request.

Load the base emulator This example will again be based on the complex BGP setup. To get

started, the emulation needs to be first loaded:

Listing 66: Loading previously built emulation

emu.load('../BO0-mini-internet/base-component.bin')
base: Base = emu.getLayer('Base')
ebgp: Ebgp = emu.getLayer('Ebgp')
This example will be adding a new autonomous system to perform the anycast. Listing 66 therefore

retrieves the EBGP and the base layer from the loaded emulation.

Create autonomous system Next, create the new autonomous system that will be used for the
anycast setup. Create two networks with the same prefix, and create two hosts in those networks with

the same IP address:

Listing 67: Creating the anycast AS ans hosts

as180 = base.createAutonomousSystem(180)

86

as180.createNetwork('net0', '10.180.0.0/24")
as180.createNetwork('netl', '10.180.0.0/24"')

as180.createHost ('host0') .joinNetwork('net0', address '10.180.0.100")
as180.createHost('hostl').joinNetwork('netl', address = '10.180.0.100")

Create two hosts with the same IP Router for the two networks will be created in the next step.
This setup intentionally creates two disjoint parts, meaning there will be no link between the two routers

to connect the two networks.

Listing 68: Creating the routers

as180.createRouter ('router0') . joinNetwork('net0').joinNetwork('ix100")
ebgp.addPrivatePeerings (100, [3, 4], [180], PeerRelationship.Provider)

as180.createRouter('routerl').joinNetwork('netl').joinNetwork('ix105")
ebgp.addPrivatePeerings (105, [2, 3], [180], PeerRelationship.Provider)

Listing 68 creates two routers for the two networks created in the last step. There is no link between
the two routers, but both routers connect to an Internet exchange and use two different ISPs in the
exchanges as providers.

At this point, the setup is complete. Render, compile, and start the emulation. Pinging the anycast
host 10.180.0.100 should send the traffic to one of the hosts. Setting filter to icmp on the web Ul
should allow one to visualize the packet flow in the emulator. Trying from different source hosts should

result in different anycast hosts. Complete code for this example is available in appendix, listing 91.

8.7 Developing a new layer

To add new functionality into the emulator that works with the entire emulation as a whole, one can
create a new layer. Generally, if one is creating something that only works with a single node, like a
service (like a web-based app), they should create a service layer, which is discussed in the next section
instead.

To create a new layer, one will need to implement the Layer interface. The Layer interface is actually

fairly simple. It only has two methods.

8.7.1 Implementing the Layer interface

Layer::getName All layers must implement the getName method. This method takes no input and
returns a string indicating the name of this layer. The name of the layer must be unique. The name of

the layer will be used as the identifier for the layer object in the emulator.

Layer::render All layers must implement the Layer::Render method. This method takes one param-

eter, the reference to the Emulator class instance, as input. It does not need to return anything. Layers

87

should make changes to the objects in the emulation here. In the render stage, layers can safely assume
that no further API calls will be made on the Layer class itself. An example of this is the DNS service
layer. The DNS layer will start collecting nameservers for zones, finalize glue records, convert the internal
tree structure to zone files, etc. No more changes can be made to the layer - meaning no new domains

can be added, no more name servers can be added.

8.7.2 Implementing the Configurable interface

The Layer interface is derived from the Configurable interface. The Configurable class has only one

method:

Configurable::configure Layers may optionally implement the Configurable::configure method. This
method takes one parameter, the reference to the Emulator class instance, as input. It does not need
to return anything. A default implementation of Configurable::configure is included in the Configurable
class - it just returns when called. Layers can make changes to the objects, or even another layer, in the
emulation here.

Unlike the render stage, the layer should allow future changes to the layer, as other layers may make
changes during their configuration stage. An example of this is, again, the DNS service layer. Layers
like ReverseDomainNameService collect IP addresses in the emulator and assign reverse hostnames to
them by creating a new in-addr.arpa. zone in the DNS layer.

In the configuration stage, a layer should register objects that may be useful to other layers in the
emulator. An example of this is the base layers. Node and Network objects are, in fact, registered in the
emulator in the configuration stage by the base layer.

A Node object represents a network device in the emulator. It can be a server, a router, a user
machine, or any other device connected to the network. A Network object represents a network in the
emulator. It can be a private local network within an autonomous system or a public global network like

an Internet exchange.

8.7.3 Working with the global object registry

To access another object in the emulator, one will use the Registry. Consider Registry as a database
of objects in the emulator. Nodes, networks, and even other layers are registered in the Registry. To
retrieve the Registry, use Emulator: :getRegistry. The Emulator object is passed to layers in both
render and configuration stages.

To retrieve an object from the Registry, one will need to know the scope, type, and name of the
object. The scope is usually the name of the owner of the object. For private Node and Network, it is

usually their autonomous system number. Type, as the name suggested, specifies the type of the object.

88

Examples are network for Network, hnode for Node with host role, and rnode for Node with router role.
The name also defines the name of the object.

For example, to get a router node with name router0 from AS150, one can do:

Listing 69: Getting objects from the global registry
r0_150: Router = emulator.getRegistry().get('150', 'rnode', 'router0')

Example of locations of some other objects in the emulator (in the format of scope/type/name):

e AS150’s host node with name web_server: 150/hnode/web_server.
e IX100’s peering LAN: ix/net/ix100.

e [X100’s router server node: ix/rs/ix100.

e The Base layer: seedemu/layer/Base.

To test if an object exist, use has:

Listing 70: Testing object existent in the global registry
if registry.has('150', 'rnode', 'router0'):

do something...

To iterate over all objects, use getAll:

Listing 71: Iterating through all objects in the global registry

for ((scope, type, name), obj) in registry.getAll().items():
do something...

To iterate over all objects of a type in a scope, use getByType:

Listing 72: Iterating through all objects of some type in the global registry

for router in registry.getByType('150', 'rnode'):
do something...

To register an object, use register:

Listing 73: Registering new object in the global registry

registry.register('some_scope', 'some_type', 'some_name', some_object)

For an object to be registrable, it must implement the Registrable interface.

8.7.4 Working with other layers

As mentioned earlier, layers may access each other and make changes to each other. While having the
two-stage process helps with making changes in order, sometimes it may be necessary to have some layers

to be configured before or after another layer. The most obvious example of this is the base layer. The

89

base layer must be configured before all other layers. Otherwise, they will not be able to retrieve the
Node and Network objects from the Registry.

A layer can require itself to be rendered before or after another layer or ask the emulator to error out
when another layer does not exist. This mechanism is called layer dependency. To add a dependency,
layer can call Layer: :addDependency.

The addDependency API takes three parameters:

e layerName: string, name of the layer to target.

e reverse: A boolean, when True, this addDependency creates a reverse dependency. Regular
dependency requires the target layer to be rendered/configured before the current layer, while a

reverse dependency requires the current layer to be rendered/configured before the target layer.

e optional: A boolean, when True, the emulator will continue rendering even if the target layer

does not exist in the emulation.

8.7.5 Working with merging

Merging is an essential feature of the emulator. It enables the re-use of existing layers in another
emulation. One can build and public a full DNS infrastructure without the base layer. Other users can
then merge the DNS infrastructure with their own emulation with the base layer without re-building the
DNS infrastructure themselves.

During merging, the same layer may exist in both emulators. A Merger class needs to be imple-

mented to handle the merging. The Merger interface are as follows:

Merger::getName The getName call takes no parameter and should return the name of the merger.

This should be a unique identifier of the merger.

Merger::getTargetType The getTargetType call takes no parameter and should return the name
of type that this merger targets. For example, a merger that targets the Base layer should return a

BaseLayer object here.

Merger::doMerge The doMerge call takes two parameters. Call them objectA and objectB. When
user performs a merge by calling newEmulator = emulatorA.merge(emulatorB), objectA will be the
object from emulatorA, and objectB will be the object from emulatorB. The call should return a new,

merged object of the same type with the objectA and objectB.

90

8.8 Developing a new service

Services are special kinds of layers. One way to differentiate the regular and services layers is how they
make changes to the emulation. A regular Layer changes the entire emulation (like BGP, which configure
peeing across multiple different autonomous systems, exchanges, and routers). In contrast, a service only

changes individual nodes (like Web, which install nginx on the given node).

8.8.1 Implementing the Server interface

The first step of creating a new service is to create a new class implementing the Server interface. The
Server interface represents server software running on a physical node. Only one method is required by

the Server interface:

Server:install All server classes must implement this method. This call installs a service onto a
physical node. One parameter, the reference to the physical node, will be passed in, and the method
does not need to return anything. Generally, one will make changes to the physical node here. (e.g., call
node.addSoftware (’some_software’)).

Other methods to configure the service should also be implemented in this class. For example, the
web server class implements WebServer: :setPort to allow changing the listening port number of the
nginx web server. However, if a setting will be affecting all instances of servers, the method to change

such a setting should be implemented directly in the Service class instead.

8.8.2 Implementing and working with the Service interface

After finishing working with the Server class, one will also need to create a new class implementing the
Service interface. The Service interface is derived from the Layer interface. The service interface will
handle the virtual node resolving internally.

Only one method is required in the Service interface:

Service::_createServer All services must implement this method. This call takes no parameter, and
should create and return an instance of the Server of the Service (the one created in the last section).
This instance will eventually be returned to the user.

One may optionally implement the following methods to customize the configuration and render of

a server:

Service::_doConfigure The _doConfigure method will be called to configure a server on a node
(during the configuration stage). Two parameters will be passed in. The first is a reference to the
physical node, and the second is the instance of the Server that has been bound to this node. The

default implementation of this method is to just return when called.

91

Service::_doInstall The _doInstall method will be called to install a server on a node (during the
render stage). Two parameters will be passed in. The first is a reference to the physical node, and the
second is the instance of the Server that has been bound to this node. The default implementation of

this method is to call server.install(node).

8.8.3 Retrieving list of virtual nodes and physical nodes

It is possible to get a list of virtual node names and their corresponding server objects by calling
Service: :getPendingTargets. It will return a dictionary, where the keys are virtual node names,
and the values are server objects.

To get a list of physical nodes, one may call Service: :getTargets. Note that getTargets only
works in the render stage, as virtual nodes are resolved in the configuration stage. It will return a set,

where the elements are set of tuples of (Server, Node).

8.8.4 Change render and configuration behavior

Sometimes a service may need to do some extra configuration on the service itself as a whole. Examples
of this are DomainNameService and CymruIpOriginService.

The DomainNameService needs to add NS records to zone files after the virtual nodes are bound to
physical nodes since before that, it does not know what IP address the servers will have. This is done
by overriding the render implementation. The Service is just a special kind of Layer, so it still has all
methods from the Layer interface. This means that services can still add logic to the render method.
One just needs to remember to call super() .render(emulator) after their logic, so that the service
interface can handle the rest of the installation process.

The CymruIpOriginService, on the other hand, needs to collect IP addresses in the emulator, create
a new zone in the DNS layer. It does so by overriding the configure method of the Layer interface and
collecting IP there. It also calls super () .configure(emulator), so the servers are properly configured

and bound to physical nodes.

9 Performance Evaluation

The section will evaluate the SEEDEMU framework. This first part will be about the framework itself -
how does it fit in the context of for-education emulator, and take a look back on the goals. The second

part will focus on performance.

92

9.1 Goals

e This system must handle a large number of nodes: This will soon be shown in the next section.
The framework has no limit on how many nodes one can create. The limit on how many nodes one

may run is on hardware.

e This system must be able to run a reasonably-sized network on a single, average computer. It may
optionally allow the network to run distributedly on multiple computers: This, too, will be shown
in the next section. In the test, it is shown that a simple host node running nginx and ping takes

about 50 MB, where a router consumes about 30 MB when idling.

e This system must be run in real-time and allow easy user interaction: Docker containers are running
in real-time. The web Ul and case study section shows that user interactive is also simple and works

well.

e Users must be able to create a reasonably-sized network easily. Provide trivial ways for users to
create multiple networks and nodes: Yes, it is also simple to create complex emulation; see case

studies.

e Try to make part of the network re-useable. Users should be able to share and re-use part of
networks or services running on nodes in another network: Reusability is the main focus of the
framework, and it works well. The reusability is provided by the layer, virtual node, and binding

system.

e In order to offer high reusability, there should be some mechanism to allow one to merge emulations

with trivial efforts: Yes, there is a merging mechanism, and it also works perfectly.

e Different parts of the emulation should be able to work independently of each other. Suppose one
is only interested in working with DNS. In that case, they should not need to worry about BGP,
routing, and layer two connectivity too much: This is the core idea behind the layer and component

mechanism.

9.2 Methods

While the emulations in the SEEDEMU framework can be compiled into multiple different platforms, the
main focus was the docker. The evaluation section looks at the performance and resource consumption
of various emulation scenarios in docker.

The performance evaluation of the docker and the container technology in general, in terms of soft-
ware performance, has already been discussed many times in the past [26] [25]. This section will therefore

focus on the less-explored areas that are more important in the context of for-education emulation.

93

The performance tests will be conducted in two parts. The first part evaluates the per-unit resource
consumption versus the number of hosts, routers, and networks in emulation. The second part evaluates
the impact on packet forwarding performance when traveling through emulated nodes. The host used for
evaluation is running two Intel® Xeon® CPU E5-2660 v2 CPU (40 threads, 20 cores total), with eight
16 GB DDR3-1600 memory (128 GB total). Performance information like CPU and memory usage will
be obtained with from the /proc/stat and /proc/meminfo files. All tests will be conducted without
overloading the host system to ensure accurate results.

In order to make sure the physical memory is fully utilized, the swapness is set to 1.

All CPU and memory tests result are obtained by first starting the emulation, waiting for 60 seconds
(to allow route propagation), then snapshotting /proc/stat and /proc/meminfo every one second for
the next 100 seconds. Average CPU utilization and memory are then used as the result for each test.

For CPU usage, the /proc/stat file provides the following fields [27]:
e user Time spent running user-space programs.
e nice Time spent running low-priority (high nice value) user-space programs.
e system Time spent in kernel-space.
e idle Time spent doing nothing.
e iowait Time spent waiting for I/0.
e softirq Time spent handling interrupts.

e steal Times “stolen” by the hypervisor. Generally, this happens if the hypervisor’s CPU is over-

subscribed, and other virtual machines “steal” the CPU time of the current CPU.
e guest Time spent running virtual machines.

e guest_nice Time spent running low priority virtual machines.

Generally, the unit of all items above is seconds on the x86_64 platform [27]. All values are cumulative
time that the CPU has spent on them since the system boot. By snapshotting the values every second
and taking derivative, one can calculate the CPU time spent in non-idle states in the last second. For
memory, details are extracted from /proc/meminfo.

9.2.1 Per-unit performances

For this section, an emulation generator script is used to generate emulation with a large number of

nodes and networks. The generator takes the following parameters:
e The number of autonomous systems to create (nag).

94

e The number of routers to create in each autonomous system. For each router, one internal network
that can be used for hosting the host nodes will be created. One router will connect to another
router with another internal network. For example, if “4” were provided, the generator would
create four routers and four internal networks. The four routers will be liked together with three

internal networks. A total of four routers and seven networks were created (N outer)-

e The number of autonomous systems to put in each exchange. The first router in every autonomous
system will join at least one Internet exchange. The last autonomous system in the exchange will
also join the next exchange (to transit between the Internet exchanges). Enough Internet exchanges
will be created, so every autonomous system is at least in one exchange (nyx). All routers peer

with all other routers in the exchange using the unfiltered relationship.
e The number of hosts to create in each host network (npest).

e Service or command to run on each host node.

The total number of networks that will be in the BGP routing table in the generated emulation can
be calculated by totper = nas * (Nrouter + Nrouter — 1), the total number of routers can be calculated by

totrouter = MAS *Nrouter, the total number of host nodes can be calculated by tot,ne: = 1 AS*Nrouter ¥NMhost,

and the total number of Internet exchanges can be calculated by tot;x = f:’;‘j 1; since Internet exchanges

create route server, it adds tot;x routers to the emulation.

9.3 Tests
9.3.1 Large number of autonomous systems

The first test attempts to find the relationship between the number of autonomous systems and resource
consumption. In this test, there is always only one router in each autonomous system and no hosts. Each
Internet exchange will house five autonomous systems. One or two of them will be transit autonomous
systems (One if the Internet exchange is the first or the last Internet exchange, two if it is anything else).
The autonomous systems will form full-mesh peering within the internet exchange, using the Unfiltered
relationship. The range of numbers of autonomous systems is 0 to 1,000. With 0 being snapshotting
the system resource consumption with the emulator not running. Check listing 75 and 76 for the scripts
used to generate the emulation.

For 0 to 350 autonomous systems, the increment between each test is 10; for 350 to 500 autonomous
systems, the increment between each test is 50, and for 500 to 1,000 autonomous systems, the increment
between each test is 100.

Figure 14 plots the memory test results on a graph, where the horizontal axis is the number of

autonomous systems, and the vertical axis is the memory consumed in kB. An attempt to fit the curve

95

I I
x Test results

900 || Memory (iB) = 178.23 x 2? + 33,058.91 » = + 10,566, 441 |

150

Memory consumed (GB)

50

0, |

| |
—-100 O 100 200 300 400 500 600 700 800 900 1,000 1,100
Number of ASes

Figure 14: Number of ASes vs. memory consumption

with a function is also shown on the graph. Since the host memory is 128 GB, it reaches the physical
limit after the test of 700 autonomous systems. The host system starts to swap the pages out to swap
spaces. Since the goal of the tests is to see per-unit performance without overloading the host, results
after 600 autonomous systems are not used in the graph fitting.

The function used to fit the graph is y = 178.23 * 22 4 33,058.91 * = + 10, 566, 441, where y is the

memory consumption in kB. This function makes sense because:

e The host system itself consumes a fixed amount of memory even when it is not doing anything.
This is the constant part of the function (i.e., the 10,566,441 kB here. This is the same memory

consumption when the host system is not running any emulation).

e When containers are not running anything, it is also reasonable to assume that they will consume
some memory. In this case, every router and route server is also running the BIRD routing daemon.
The host system also needs some amount of memory to just have the namespaces for containers.
Having bridges on the host system also consumes a bit of memory. This is the liner component in

the function (33,058.91 x x). This indicates a 33,058.91 kB memory consumption for each router.

e For the 178.23 %2 part, it is safe to assume that this is the memory consumed by the routing table.
Since every router’s routing daemon and kernel routing table needs to install the routes advertised
by every other router, the 22 makes sense. In this case, the 178.23 kB is the memory needed for a

single network.

Figure 15 shows the relationship between the number of autonomous systems and CPU time in
seconds. The horizontal axis is the number of autonomous systems, and the vertical axis is the CPU

time in seconds that the CPU spent in a non-idle state. A liner function, y = 0.063 * z + 3, is used to fit

96

2,000 : : 40
x Test results
—y=0.063x2x+3

1,500 |- 130

Q)

£ 1,000 | x {20 &

- x x %

E 2

©)
500 | +{10

07 NN 70

| | | | | | | | | |
—-100 O 100 200 300 400 500 600 700 800 900 1,000 1,100
Number of ASes

Figure 15: Number of ASes vs. CPU time

the test results. One may notice that the CPU time goes up significantly after 700 autonomous systems.
Recall that the host reaches the physical memory limit after 700 autonomous systems. Many CPU times
are spent swapping pages in and out of the physical memory, and therefore the explosion of CPU time
after 700. Another figure, Figure 16 is provided to show the trend before hitting the physical limit. It
should also be noted that the CPU is still not in full load even when running out of physical memory
and having to resort to swapping (peak at 32.3956%), so one may, in theory, run large emulation given
that they have a fast enough swap space and CPU.

Figure 16 shows a near-linear relation in CPU time against the number of autonomous systems.
This result makes sense since once the route propagation completes, there will rarely be new CPU-heavy
tasks in the emulation since there are no host nodes, only router nodes. The CPU time can be seen
fluctuating a bit throughout the tests. One possible exploration for this behavior is that, since the CPU
time is rather low to start with, any instability in the host system or the containers can be reflected on
the result as a rather large change in the CPU time. One example of this source of instability is how the
kernel scheduler decides to run the containers. The main CPU consumer, in this case, is observed to be
the routing daemon. Since OSPF is enabled on every router, even when they do not have any neighbors,
they still send out periodic OSPF hellos over the internal networks, leading to some CPU consumption.
BGP is also sending periodic keep-alive messages. The CPU usage also never exceeds 1%, so it is less of

a concern in this case when compared with the memory usage.

9.3.2 Large number of hosts

This section focuses on the memory consumption of the host nodes running some lightweight services.

The number of autonomous systems, routers, and autonomous systems in each Internet exchange is fixed

97

50 1
x Test results
—y=0.063 %2+ 3 "

40 10.8
_ 3
— 30| —10.6 —
] Q
) %
= z
E 20 |- 10.4 E
© O

10 | -10.2

| | | | | | | |

| | |
-50 0 50 100 150 200 250 300 350 400 450 500 550 600 658
Number of ASes

Figure 16: Number of ASes vs. CPU time (when memory is sufficient)

to ten, one, and five, respectively. Every host node in the emulator will run a nginx web server and run
ping against one random router in the emulator. The scripts in listing 75 and 76 is used to generate the
emulation.

The test will start from 0 host nodes as a baseline and continue until 80 hosts. It should be noted
that, unlike the last test, 0 host nodes here does not mean the host system is not running an emulation. It
means the emulation is running ten autonomous systems, each with one router and one internal network
but no hosts. It should also be noted that the same number of hosts are created in every internal network
in every autonomous system. For example, if eighty hosts are created for each autonomous system, the
total for ten autonomous systems will be 800 hosts.

Unlike the last test, where the max number of routers is 1,000, this test only goes to 800 to ensure
that the emulation will not require more than the physical memory the host has to run.

From Figure 17, one can see that the memory consumption for host nodes is nearly perfectly linear.
This result also makes sense, as adding new host nodes is merely creating a new container in the emulation
that runs some software. In this case, the software running on the host node operates individually (ping
and nginx), meaning adding a new instance of the software does not make any difference to the existing
instance of the software. In the last test, each new autonomous system generates a new route that needs
to be installed to every router, and therefore the quadratic component of fit function.

The fit function is y = 615 * x + 47,389.91. Here, 47,389.91 is the memory in MB when no host is
running in any autonomous system. The 615 MB is the memory in kB required to run ten host nodes
with ping and nginx. That means 61.5 MB each hosts.

Figure 18 plots the relationship between numbers of host nodes and CPU time. The result again

shows a linear pattern with some fluctuation. The fluctuations are likely introduced by the same factors

98

Memory consumed (GB)

CPU time (s)

100 |{ » Test results . g
—— Memory (MB) = 615 % x + 47, 389.91
90 - .
80 - .
70 .
60 - .
50 .
| | | | | | | | |
0 10 20 30 40 50 60 70 80
Number of hosts per AS (the total number of ASes is 10)
Figure 17: Number of hosts per AS vs. memory consumed
70 I I 1.4
x Test results
60 1l — vy =0.75 % x + 3.92 * 112
50 - 11
=
40 |- 108 o
g
=
30 - 10.6 5
o
@)
20 104
10 -10.2
0 0
—10 0 10 20 30 40 50 60 70 80 90

Number of hosts per AS (the total number of ASes is 10)

Figure 18: Number of hosts per AS vs. CPU time

99

I I
200 1 x Test results h
—y1 (kB) = 15,469.49 * 22 + 388,428.37 x x + 10,573, 163
= —y2 (kB) = 1,110,000 * = + 6,342,004
© 150 |
o
(]
g
a X
§ 100 |- .
>
3
5 50
<] — |
=
0 |
| | | | | | | | | |

|
—-10 0 10 20 30 40 50 60 70 80 90 100 110
Number of routers per AS (the total number of ASes is 10)

Figure 19: Number of routers per AS vs. memory consumed

as the last test. In the fit function, 3.92 second is the CPU time spent when there is no host running.
On average, ten host nodes running ping and nginx consume 0.75 seconds of CPU time. In other words,
0.075 seconds for each host node. It is higher than the 0.063 of routers; one possible explanation of this
is that, with the hosts pinging routers, the ICMP packet may travel more than one hop, whereas the
OSPF hellos and BGP keepalives are only sent to the directly connected networks. Again, the CPU

usage is under 1.5% percent the whole time, so it is not the primary concern.

The ARP cache issue During the test case for 80 host nodes, the Linux kernel started to report
ARP table overflow. Sample error messages are shown in listing 74 This is due to the low default ARP

table size settings. This setting can be changed using the gc_thresh parameters [28].

Listing 74: Linux ARP table overflow

[282667.265515] neighbour: arp_cache: neighbor table overflow!
[282667.265587] neighbour: arp_cache: neighbor table overflow!
[282667.265659] neighbour: arp_cache: neighbor table overflow!
[282671.169367] net_ratelimit: 20 callbacks suppressed

9.3.3 Large number of networks, but small amount of autonomous systems

This test looks at the unit performance when the number of autonomous systems is small, but each
autonomous system has a lot of internal routers and a lot of internal networks. In this test, there are
ten autonomous systems and five autonomous systems in each Internet exchange. There will be 1 to 90
routers in each autonomous system. Recall that the number of the network in each autonomous system
i8 2 % Npouter — 1. So at peak, there will be 1,790 networks (not counting the Internet exchange).

Figure 19 shows the memory consumption plotted against the number of routers within each au-

100

1,400 ‘ ‘

x Test results ipe
1,200 {{ — 9y = 0.13 % 22 4 3.38
1,000 | 120
O 800 |- g
é 115 %
g 600 |- =
E -10 E
© 400f O
200 [1°
0 -0
| | | | | | | | | |

|
-10 0 10 20 30 40 50 60 70 80 90 100 110
Number of routers per AS (the total number of ASes is 10)

Figure 20: Number of routers per AS vs. CPU time

tonomous system. Two fits were attempted on the test results, one using the results for 0 to 30 routers
and the router using results for 30 to 100 routers. One may observe that the memory consumption starts
showing a quadratic-like trend when the number of routers is small (for example, the 0 to 10 routers
range) and looks like a linear trend as the number of routers increases. One reason for this is that, as
the number of routes from the same autonomous system increases, the number of memory consumed
per route will decrease. BIRD uses an efficient way to store routes, where routes with the same route
attribute will be “combined.” [9] Routes from the same autonomous system, in this case, will share the
same set of attributes (ORIGIN, AS_PATH, and NETHOP). BIRD can therefore store only the prefix and
only keep one copy of the route attributes. Ideally, there will only be ten unique copies from different
autonomous systems; all routes from the same autonomous systems should share the same attributes.
While the prefix itself still needs to be stored on every router, given its small size (32 bits for the prefix
and 8 bits for the prefix length), the consumption of the route itself may be overshadowed by other major
memory consumers like the OSPF and IBGP sessions themselves.

Figure 20 shows the relationship between numbers of routers and CPU time. It follows a quadratic
trend, which makes sense. Since the IBGP layer configures full-mesh IBGP between all reachable
internal routers, the number of IBGP sessions pairs in terms of the number of routers is npgris =

("“’“‘”*(g""“t”_l)), therefore the quadratic trend. Figure 21 shows the relationship between the number

of IBGP sessions and CPU time, and one can clearly see the linear relationship now. One may realize
that OSPF may also contribute to the CPU time here; however, since there are only two OSPF-enabled
interfaces on most routers, and with the number of IBGP sessions going up to 99,000, the CPU time
consumed by OSPF is not as significant.

Note that this test is done using the full-mesh IBGP setup. If one chooses to use the MPLS option,

101

1,400 T T T
x Test results x {95
1,200 || —y = 0.0134 % = + 3.38
1,000 |- 120
= sl =
S 600 3
5 110 2
© 400| O
200 |- 1°
0f 40
| | | | | |

| | | | |
-0.1 0 0.1 02 03 04 05 06 07 08 09 1 1.1
Number of IBGP sessions 105

Figure 21: Number of IBGP sessions vs. CPU time

all non-core routers will no longer carry the full table. In fact, they will not run IBGP at all. This should
reduce the memory and CPU consumption significantly. One other option to reduce CPU consumption
is to use the route-reflector-based IBGP, which will reduce the number of IBGP sessions to only n
session, where n is the number of internal routers. There may not be significant changes to the memory
consumption, but it should have a great impact on CPU consumption.

Figure 21 also provide valuable information regarding the CPU consumption of BGP sessions them-
selves. IBGP and EBGP are, in nature, the same, and therefore the test provides an option for one to

evaluate how many sessions one can expect to run, given the CPU hardware.

9.3.4 Packet forwarding

This section focuses on the packet forwarding performance of the emulator. In addition to CPU and
memory, tests in this section also run iperf3 and ping between nodes to test throughput and latency
between nodes. iperf3 is a network benchmarking tool that can be used to measure the throughput of

the network. The scripts in listing 80 and 81 are used generating emulation for the tests.

Single path, single connection, various numbers of hops In this set of tests, only one autonomous
system is created. In each autonomous system, there are 10 to 200 internal networks. Another emulation
generator script generates the tests. One router will sit between two internal networks. Two hosts sit at
the edge of the long chain of routers and networks. The hosts are configured to use 255 as their default
TTL to allow their packet to traverse the long path. The host uses the default TCP congestion control
algorithm (cubic). ipref3 is used to test the TCP TX and RX speed using a single connection. ping

is used to test the RTT (Round-trip time) between the two hosts. ping is configured to send one ICMP

102

I
4,000 | . o RX
« TX
— 3,000 |
o
e}
=)
= 2,000 i
o
=
20
=
o
£ 1,000 | i
H
0 | |
| | | | |

| | | | | |
0 20 40 60 80 100 120 140 160 180 200
Number of hops

Figure 22: Number of hops vs. TX/RX speed

echo every millisecond. The ping program will send a total of 1,000 ping packets.

Figure 22 shows the relationship between transmit (TX) and receive (RX) speed over a single TCP
connection and the numbers of hops in between the sender and receiver. The relationship appears
hyperbolic. Considering that some fixed overhead and slowdown will occur on every hop the packet
traverse, this outcome makes sense.

Figure 23 shows the relationship between RTT and the number of hops in between. The relationship
appears to be quadratic. On paper, this relationship should be linear. The reason for it being quadratic is
likely again IBGP and OSPF. IBGP keepalives use CPU resources, and there will be again nx(n—1) IBGP
sessions, where n is the number of the routers. Since the number of networks within the autonomous
system increased, OSPF may also contribute a higher amount of CPU usage in this case. With most
CPU time spent in OSPF and IBGP, as the number of hops increase, the more time the ICMP packet

needs to wait before it gets transmitted.

Multiple parallel streams The next set of tests benchmarks the packet forwarding performance when
multiple pairs of clients and servers send traffic to each other. In tests, 1 to 20 autonomous systems are
created. In each autonomous system, there are ten routers between the client and the server. The client
and server will perform the same set of tests as the last case (i.e., throughput and ping), but with 1 to
20 pairs of client and server simultaneously.

Figure 24 shows the relationship between number of parallel streams and throughput. The relation-
ship appears logarithmic. With each additional new pair of client and server, the throughput increase
to some extent, but the increase in throughput drops as the number of streams go up. One may also
notice that the speed stopped increasing at around 11 streams at around 13 Gbps. At the same time,

when it reaches 13 Gbps, the CPU usage on all cores reaches around 100%. This indicates a hardware

103

Average RTT (ms)

— — — =
oo o [N} 5N (@)

Total throughput (Gbps)

[=p}

x RTT
——y = 0.00065 * 22 + 0.02720 * z

| | | | | |
0 20 40 60 80 100 120 140 160 180 200
Number of hops

Figure 23: Number of hops vs. RTT

I I
x TX
o RX
— 1y (Mbps) = 3,900 * In(z) + 3,900

0 2 4 6 8 10 12 14 16 18 20

Number of streams (the number of hops is 10)

Figure 24: Number of streams vs. TX/RX speed

104

I I
x RTT <
L2y = 0.04088755 * z + 0.33995113

—_
T

Average RTT (ms)
o o
o 0

T T

0 2 4 6 8 10 12 14 16 18 20

Number of streams (the number of hops is 10)

Figure 25: Number of streams vs. RTT

performance limit.

Figure 25 shows the RTT and its relationship with the number of parallel streams. Even when it
reaches 20 streams (or 200 routers), the RTT is still below 1.5ms. The relationship itself appears linear.
Unlike the last test, the total number of IBGP sessions is much smaller since each autonomous system
only has ten routers. At peak, there are only 10 * (10 — 1) * 20 = 1800 IBGP sessions, as opposed to
200 % (200 — 1) = 39800 IBGP sessions in the last test. This shows that without IBGP contributing to
the large CPU usage, the RTT itself only increases linearly as the number of nodes in the emulation

increases.

9.3.5 Smaller scale tests

In order to confirm the trends above and see how a more typical personal computer performs when
using the emulator, a select sets of the tests above are repeated on a virtual machine with the following

hardware:
o 2 * Intel® Xeon® Silver 4210 CPU @ 2.00GHz virtual CPUs

e 4 GB of DDR4 memory

The above hardware is a more realistic representation of what an average SEEDEMU personal user
may use. The same tests are performed on the virtual machine. This section will cover the results of the

tests. The swapness value is again set to 1.

Memory vs. number of autonomous systems This is the same test, but it only goes up to 100

autonomous systems instead of 1,000 in this round.

105

I I
x Test results

5,000 || —— Memory (kB) = 178.23 % 2 + 33,058.92 % 2 + 278, 342 1

4,000

3,000 |

2,000 |

Memory consumed (MB)

1,000 |

s ! ! ! ! ! ! i

|
—10 0 10 20 30 40 50 60 70 80 90 100 110
Number of ASes

Figure 26: Number of ASes vs. memory consumption

Figure 26 shows the consumption in small scale test. The same quadratic function from the last test
was reused, except that the constant part has been changed to match the idle host memory consumption.
It can be seen in the figure that the function predicted the memory consumption pretty accurately.
However, the virtual machine reaches the physical memory limit at around 80 autonomous systems and
starts to swap.

Figure 27 shows the CPU usage. The relationship is linear, but the CPU time does not increase as
rapidly as the last test. The reason may be that the Xeon® Silver 4210 CPU is superior to the E5-2660.
The CPU usage still spikes up after it swaps pages out, but the effect is much less intensive. Possible
reasons are that fewer pages need to be swapped out (the overall memory usage is low) and that the
storage medium is M.2 SSD instead of HDD in the last test. Again, the CPU load is too low to be the

limiting factor. The primary limiting factor is memory consumption.

Forwarding - number of hops Figure 28 shows the test result of the same throughput speed tests,
but only goes up to 100 hops. The pattern is again hyperbolic. The initial speed goes up to 6,850 Mbps,
likely due to the higher CPU power available for the emulator. The throughput at 100 hops is 8.18 Mbps.

Figure 29 shows the relationship between RTT and number of hops. The relationship is again

quadratic but is lower overall, likely also due to the faster CPU.

Forwarding - parallel streams Figure 30 shows the same parallel forwarding throughput test. The
pattern here is very different from when testing with many CPU cores. Here, the performance may be
limited by the test program, iperf3, rather than the actual packet forwarding. One can observe that the
test yields the highest throughput when using two threads, which may be because there are two virtual

CPU cores allocated to the virtual machine. Having too many parallel streams, instead of increasing

106

3 I I T
x Test results " 114
——y = 0.018 * = + 0.595960 x
2.5 H
-11.2
z IS
g 08 2
= 151 < ’ g
5 106 2
© oap)
x 104
0.5 0.2
O | | | | | | | | | | |
—-10 0 10 20 30 40 50 60 70 80 90 100 118

Number of ASes

Figure 27: Number of ASes vs. CPU time

o x RX
o TX
6,000 —y= 75;500 850
)
o
Q0
= 4,000 |-
5
o
=
oD
=}
2 2,000|
&
0 [
| | | | | | | | |

|
10 20 30 40 50 60 70 80 90 100
Number of hops

Figure 28: Number of hops vs. TX/RX speed

107

x RTT
——y = 0.00046108 * 2

Average RTT (ms)

|
10 20 30 40 50 60 70 80 90 100

Number of hops

Figure 29: Number of hops vs. RTT

the throughput, actually lowers the throughput. A possible explanation of such behavior may be in the
scheduling. Having too many sets of iperf3 makes the operating system constantly context switching
from one test program to the other, lowing efficiency.

Figure 31 shows the relationship between RTT and the number of parallel pings. The test result
falls within 0.22 ms and 0.32 ms, which is within the margin of error. There are just not enough nodes

to have an impact on the RTT with this stronger CPU.

9.4 Conclusion

The evaluation section finds that the design of SEEDEMU matches all design goals. The test section

conducted various tests and found out the following per-unit performance functions:

e Memory vs. autonomous system with one network (i.e., network with unmergeable attributes):

memory = 178.23 x x? + 33,058.91 x = + C.
e CPU time vs. autonomous system with one network: time =k x z + C.
e Memory vs. host running some simple service: memory = 615,000 X npes + C.
e CPU time vs. host running some simple service: time = k X npost + C.

e Memory vs. autonomous system with a lot of routers, given large enough number of routers (i.e.,

a lot of networks with mergeable attributes): memory = 111,000 X nyoyter + C.
e CPU vs. autonomous system with a lot of networks: time = k x 22 + C.

e CPU vs. Number of BGP sessions: time = k X Ngession + C.

108

Total throughput (Mbps)

Average RTT (ms)

1.4

1.2

0.8

0.6

0.4

0.2

0.32

0.3

0.28

0.26

0.24

0.22

-10%

—— TX
—— RX

2 3 4) 6 7 8

Number of streams (the number of hops is 10)

Figure 30: Number of streams vs. TX/RX speed

10

2 3 4 5 6 7 8
Number of streams

Figure 31: Number of streams vs. RTT

109

10

e RTT vs. number of hops: rtt = k; X n%ops + ko X Npops + C.

...where k£ and C' are some constant. k and C' may vary from system to system. k is added under
the assumption that, given the architectures do not vary too much, other CPUs may be able to run all
codes faster or slower, so the speedup and slowdown should be constant. C is the idle CPU / memory
consumption for the system. Another set of tests may be required if the CPU architecture changes
too much and the speedups and slowdowns of certain tasks are greater than the others. The memory
consumption should be constant unless there are drastic changes in hardware architecture or optimization
of BIRD, Linux kernel, or docker.

In most tests, the bottleneck is at memory since the emulation node uses only a tiny amount of
CPU compared with the amount of memory they used. Unless one is performing heavy tasks inside the
emulator, like running Ethereum miner, they are most likely to hit the physical memory limit before
they hit the CPU limit. The tests provided a function to approximate the number of networks they can

run based on available physical memory.

10 Summary and future work

The SEEDEMU framework is a programming framework that allows one to build network emulations
easily. While there are plenty of emulation platforms, there are no convenient ways to build emulations
for those said platforms. Some existing platforms also have limited scalability, and it is demonstrated that
the main target platform of the SEEDEMU framework, docker, is scalable enough to handle extensive
emulations given enough hardware resources.

This thesis explored the current network emulations and simulation solutions, identified the missing
piece in them to make them suitable for for-education use (namely, ease of use when building large
emulation, reusability, and scalability), and tackled every critical missing piece to produce a very easy-
to-use framework that exceeds the original design goals. The thesis went through the entire design
process of the SEEDEMU framework, detailed and justified the design choices, and explored different

approaches to non-trivial tasks.

10.1 Future work

While I believe the SEEDEMU framework is already in excellent shape, here are a few improvements

that can make it even more powerful and useful.

Topology generator Sometimes, one may want to experiment with some high-level application on the
emulator, like DNS infrastructure, blockchain, and more. Now, in order to use those high-level services,

one would need to first build or obtain a pre-built base layer image.

110

The BGP information is generally publicly available via countless public looking glasses on the
Internet, and some public services, like Réseauxr IP Européens Network Coordination Centre Routing

1 even program programmatic API access to BGP information. Other publicly

Information Service
available information like PeeringDB 2 also provides information of private and public peering facilities,
Internet exchange members, etc. It is possible to build an emulation generator that generates base layer
topology based on publicly available information. The emulation may not necessarily be the exact replica

of the real world, but it should provide real enough experience for one who wants to test higher-level

services.

Web-UI extensions The web Ul currently offers “quick actions” to enable and disable BGP peers or
disconnect a node from the network entirely. The logic of those quick actions is currently implemented
by the docker compiler and the client program. Meaning to add new quick actions, one will have to
update the client program and the compiler. As most users will probably use the map feature of the
seedemu-client to interact with the emulation, it can be a good idea to provide some API to allow layers
and services to provide their own quick actions on the map.

Some possible use cases include:

e One may be interested in using the emulator for smart contact, but they may not know how to
operator BGP/OSPF (i.e., work with the BIRD CLI or vtysh). They, however, may be interested
to see how disconnecting major ISPs from networks affect the blockchain. Quick actions will allow

them to do that without knowing how to operate the CLI.

e Some services, like botnet and Ethereum, take user interaction after the emulation is started.
Providing quick actions allows them to interact without having prior knowledge on how to operate
the software (the botnet control server and geth in this case). This can be the extent to other
services, like DNS, to dynamically create new zones, configure Negative Trust Anchors [29], and

more.

Improved distributed emulation While the SEEDEMU framework provides the compiler to output
emulation that can be run distributed on a docker swarm cluster; the current option is somewhat limited.
For starters, the web Ul program will only be able to see networks and nodes running on the current
cluster node, not the entire cluster. It is also currently only possible to break emulation at the autonomous
system level. One may want to break the emulation down into a finer faction, or based on other criteria,

like geographic region, and more.

Lhttps://www.ripe.net/analyse/Internet-measurements/routing-information-service-ris
2https://www.peeringdb.com

111

More services and components Developing new services and components for the framework is a
continuous effort. More services and components can be added to the emulator to allow one to cover

more areas of interest.

Other compilers While the emulator itself focuses mainly on docker. It could also be helpful to add
other compilers. Like Kubernetes, LXC, or even other network emulation software. As time goes on,
there may also be superior emulation platforms available. Developing from the new platforms to archive

greater performance is also a continuous effort.

Unit tests The SEEDEMU framework is an open-source project. In order to attract outside contrib-
utors, it is important that there are some ways for the contributors to check their contributions. While
it is possible to review every change manually, it will quickly become very tedious if the number of

contributors increases. Some unit tests to automate common checks should be developed for the project.

11 Appendix

11.1 Perform the evaluation locally

This section details how one can use the benchmark script to perform the same tests in the performance
evaluations section and how to process the raw data from /proc/meminfo and /proc/stat, etc.

There are two emulator generator scripts used; one for generating an emulation with large numbers
of networks and nodes, and one for generating one or multiple long chains of networks. There are also
two driver scripts that invoke the two emulation generator scripts and collect stats like CPU, memory,
ping output, and iperf3 output. Finally, two scripts are used to process the raw data collected by the
emulation generator and output the data in CSV format. The next two subsections will go over the

implementation and usage of the scripts.

11.1.1 CPU and memory usage

The section describes the scripts used to generate emulation and collecting metrics with large numbers

of nodes and networks.

Emulation generation script Listing 75 shows the code for the “large numbers of routers, hosts

and/or autonomous systems” emulator generator. This generator takes the following parameters:

e ——ases: Number of autonomous systems to generate.

e ——ixs: Number of autonomous systems in each internet exchange. The number of internet ex-

changes equals the number of autonomous systems divided by the number of autonomous systems

112

in each internet exchange.

e —-routers: Number of routers to create in each autonomous system. One internal network is

created with each router. If the number of routers is greater than two, an additional network
will be created between the routers. A router connects to at least one network (only the internal
network) and at most three networks (one internal and two networks connecting to two other

routers.)

e —-hosts: Number of host nodes to put in each internal network.

e —-web: Run a web server on every host node created.

e ——ping: Let every host node ping a random router in the emulator.

e ——outdir: The directory to store the generated emulation.

For example, to generate an emulation with 100 autonomous systems, each with ten routers, each

with ten hosts in their internal network, one can run the following command:

./generator-1.py --ases 100 --ixs 10 --routers 10 --hosts 10 --outdir ./out

The emulation will be saved in the ./out directory. One can cd into the output folder and run

docker-compose up to start it.

#!/u

from
from
from
from
from

impo

def

Listing 75: Emulation generator: Large numbers of routers, hosts and/or autonomous systems

sr/bin/env python3

seedemu import *

typing import List, Dict, Set
ipaddress import IPv4Network
math import ceil

random import choice

rt argparse

createEmulation(asCount: int, asEachIx: int, routerEachAs: int, hostEachNet: int,
hostService: Service, hostCommands: List[str], hostFiles: List[File], yes: bool) ->
Emulator:

asNetworkPool = IPv4Network('16.0.0.0/4').subnets(new_prefix = 16)

linkNetworkPool = IPv4Network('32.0.0.0/4').subnets(new_prefix 24)

ixNetworkPool = IPv4Network('100.0.0.0/13').subnets(new_prefix = 24)

ixCount = ceil(asCount / asEachIx)

rtrCount = asCount * routerEachAs
hostCount = asCount * routerEachAs * hostEachNet + ixCount
netCount = asCount * (routerEachAs + routerEachAs - 1) + ixCount

print ('Total nodes: {} ({} routers, {} hosts)'.format(rtrCount + hostCount, rtrCount,
hostCount))
print('Total nets: {}'.format(netCount))

if not yes:
input ('Press [Enter] to continue, or “C to exit ')

113

aac = AddressAssignmentConstraint(hostStart = 2, hostEnd = 255, hostStep = 1, routerStart
= 1, routerEnd = 2, routerStep = 0)

assert asCount <= 4096, 'too many ASes.'

assert ixCount <= 2048, 'too many IXs.'

assert hostEachNet <= 253, 'too many hosts.'
assert routerEachAs <= 256, 'too many routers.'

emu = Emulator ()
emu.addLayer (Routing())
emu.addLayer (Ibgp())
emu.addLayer (0spf ())

if hostService != None:
emu.addLayer (hostService)

base = Base()
ebgp = Ebgp()
ases: Dict[int, AutonomousSystem] = {}

asRouters: Dict[int, List[Router]] = {}
hosts: List[Node] = []
routerAddresses: List[str] = []

create ASes
for i in range(0, asCount):
asn = 5000 + i
asObject = base.createAutonomousSystem(asn)

ases[asn] = asObject
asRouters([asn] = []

localNetPool = next(asNetworkPool) .subnets(new_prefix = 24)

create host networks

for j in range(0, routerEachAs):
prefix = next(localNetPool)
netname = 'net{}'.format(j)
asObject.createNetwork(netname, str(prefix), aac = aac)

router = asObject.createRouter('router{}'.format(j))
router. joinNetwork (netname)
routerAddresses.append(str (next (prefix.hosts())))

asRouters[asn] . append(router)

create hosts

for k in range(0, hostEachNet):
hostname = 'host{}_{}'.format(j, k)
host = asObject.createHost (hostname)
host.joinNetwork (netname)

if hostService != None:
vnode = 'as{}_{}'.format(asn, hostname)
hostService.install (vnode)
emu.addBinding(Binding(vnode, action = Action.FIRST, filter = Filter(asn =
asn, nodeName = hostname)))

hosts.append (host)
for file in hostFiles:

path, body = file.get()
host.setFile(path, body)

114

def

routers = asRouters[asn]

link routers
for i in range (1, len(routers)):

linkname = 'link_{}_{}'.format(i - 1, i)
asObject.createNetwork(linkname, str(next(linkNetworkPool)))
routers[i - 1].joinNetwork(linkname)
routers[i] . joinNetwork (1linkname)

lastRouter = None

asnPtr

= 5000

ixMembers: Dict[int, Set[int]] = {}

create and join exchanges

for ix

in range(1, ixCount + 1):

ixPrefix = next (ixNetworkPool)

ixHosts = ixPrefix.hosts()

ixNetName = base.createInternetExchange(ix, str(ixPrefix), rsAddress =
str(next (ixHosts))) .getPeeringlan() . getName ()

ixMembers[ix] = set()

if lastRouter != None:
ixMembers[ix] .add (lastRouter.getAsn())
lastRouter. joinNetwork(ixNetName, str(next(ixHosts)))
for i in range(1 if lastRouter != None else 0, asEachIx):

router = asRouters[asnPtr] [0]
ixMembers [ix] .add (router.getAsn())
router. joinNetwork (ixNetName, str(next(ixHosts)))

asnPtr += 1
lastRouter = router

peerings

for ix

, members in ixMembers.items():

for a in members:

host

for b in members:
peers = ebgp.getPrivatePeerings() .keys()
if al= b and (ix, a, b) not in peers and (ix, b, a) not in peers:
ebgp.addPrivatePeering(ix, a, b, PeerRelationship.Unfiltered)

commands

for host in hosts:
for cmd in hostCommands:

host . appendStartCommand (cmd. format (
randomRouterIp = choice(routerAddresses)
), True)

emu.addLayer (base)
emu.addLayer (ebgp)

return

main() :

parser

parser.
parser.
parser.
parser.
parser.

'store

emu

= argparse.ArgumentParser(description='Make an emulation with lots of networks.')
add_argument ('--ases', help = 'Number of ASes to generate.', required = True)
add_argument ('--ixs', help = 'Number of ASes in each IX.', required = True)
add_argument ('--routers', help = 'Number of routers in each AS.', required = True)
add_argument ('--hosts', help = 'Number of hosts in each AS.', required = True)

add_argument ('--web', help = 'Install web server on all hosts.', action =
true')

115

parser.add_argument('--ping', help = 'Have all hosts randomly ping some router.', action =
'store_true')

parser.add_argument ('--outdir', help = 'Output directory.', required = True)
parser.add_argument('--yes', help = 'Do not prompt for confirmation.', action =
'store_true')

args = parser.parse_args()

emu = createEmulation(int(args.ases), int(args.ixs), int(args.routers), int(args.hosts),
WebService() if args.web else None, ['{{ while true; do ping {randomRouterIpl}; done 1}}']
if args.ping else [1, [], args.yes)

emu.render ()
emu. compile (Docker (selfManagedNetwork = True), args.outdir)

if __name__ == '__main__"':

main() - B

Automating the tests and collecting metrics Listing 76 provides an automated way to test and
collect metrics using the emulator generator script above. It reads options from the environment. The

accepted environment variables are:

TARGET: Test target. Can be ases, routers and hosts. Different number of TARGETs will be

created using the generator script.

START: Number of targets to start the test from.

END: Number targets to end the test at.

STEP: Number of increments in the number of targets in each step.

The number of autonomous systems in each exchange is fixed to five in all tests.

Listing 76: Driver script: Large numbers of routers, hosts and/or autonomous systems
#!/bin/bash

SAMPLE_COUNT="'100"
set -e

cd "“dirname "$0" "
results=""pwd /results"

[! -d "$results"] && mkdir "$results"

function collect {

for j in “seq 1 $SAMPLE_COUNT ; do {
now=""date +Js "
echo "[$now] snapshotting cpu/mem info..."
cat /proc/stat > "$this_results/stat-$now.txt"
cat /proc/meminfo > "$this_results/meminfo-$now.txt"
sleep 1

}; done

116

for ((i=${START}; i<=${END}; i+=${STEP})); do {
rm -rf out

echo "generating emulation..."

["$TARGET" = "ases"] && \

./generator-1.py --ases $i --ixs 5 --routers 1 --hosts O --outdir out --yes
["$TARGET" = "routers"] && \

./generator-1.py --ases 10 --ixs 5 --routers $i --hosts 0 --outdir out --yes
["$TARGET" = "hosts"] && \

./generator-1.py --ases 10 --ixs 5 --routers 1 --hosts $i --outdir out --yes
this_results="$results/bench-$i-$TARGET"
[' -d "$this_results"] && mkdir "$this_results"
pushd out

echo "buliding emulation..."

docker-compose build

bugged? stuck forever at "compose.parallel.feed_queue: Pending: set()"...
docker-compose up -d

start only 10 at a time to prevent hangs
echo "start emulation..."
1s | grep -Ev '.yml$| dummies$' | xargs -n1l0 -exec docker-compose up -d

echo "waiting 300s for ospf/bgp, etc..."
sleep 300
collect

docker-compose down
popd
}; done

One trick being used here worth mentioning is the following line:

Listing 77: Trick: start only ten containers at a time

1s | grep -Ev '.yml$| dummies$' | xargs -nl0 -exec docker-compose up -d

The docker-compose utility appears to have some issues when a lot of containers are defined and
when it tries to start a lot of containers at once. The line in listing 77 makes the docker-compose utility
only starts ten containers at a time and therefore prevent it from freezing. At the time of writing, this
issue is unsolved?.

For example, to perform tests from 10 to 100 autonomous systems and increment the number of
autonomous systems in each step by 10, one can do:

TARGET=ases START=10 END=100 STEP=10 ./driver-1.sh

The driver script will invoke the generator script, create and start the emulation, wait for 300
seconds? to make sure the routing converges, then start collecting metrics from the /proc/stat and

/proc/meminfo file once every second for 100 seconds. The results are stored in:

e ./results/bench-$i-$TARGET/stat-$now.txt

e ./results/bench-$i-$TARGET/memnifo-$now.txt

3https://github.com/docker/compose/issues/7577
41t is tested that even with more than 1,000 autonomous systems, the routing converges in under 250 seconds.

117

... where $i is the number of targets (a number between 10 and 100, in this case), $TARGET is the
test target (ases, in this case), and $now is the Unix epoch time when the metric is collected. Once
100 samples of metrics are collected, the driver script will stop the emulation and do the test again with

more targets. This is repeated until the END is reached.

Processing the raw metrics Once the data are collected, another script can be used to generate a

summary of the data. Listing 78 shows the code for the script.

Listing 78: Summary script: Large numbers of routers, hosts and/or autonomous systems
#!/bin/bash

rsltdir="results/bench-*-$1"
echo "$1,memused,cpu_sec"

for report in $rsltdir; do {
head=""sed -n 's/.*bench-\([0-9]*\)-.*/\1/p' <<< "$report" "

memfree_avg=""cat "$report/"meminfo-* | grep MemFree | awk -v N=2 '{ sum += $N } END { if
(NR > 0) printf "%.0f", sum / NR }' "

memtotal=""cat "$report/"meminfo-* | grep MemTotal | head -nl | awk '{print $2}'"
cputime_avg=""cat "$report/"stat-* | grep 'cpu ' | awk '{ print $2 + $3 + $4 + $7 + $8 +
$9 + $10 + $11 }' | awk '{ if (NR > 1) print $1-o0ld; old = $1 }' | awk -v N=1 '{ sum += $N
} END { if (NR > 0) printf "%f", sum / NR }'™"

let memused_avg=$memtotal-$memfree_avg
echo "$head, $memused_avg,$cputime_avg"
}; done | sort -nt, -ki
This script computes the average memory usage in the 100 collected samples. It also computes the

average CPU time spent doing work. It takes one parameter, the affix of the name of the folders (i.e.,

ases, hosts, or routers). The output looks like this:

Listing 79: Summary script: example output

$./mkreport-cpu-men ases
ases,memused, cpu_sec
0,285022,0.593961
10,895102,0.821183
20,1147904,0.9637

11.1.2 Packet forwarding

The section describes the scripts used to generate emulation and collecting metrics with a large number

of hops and parallel streams.

Emulation generation script Another emulation generation script is created to allow easy generation

of emulation with one or more long chains of networks. The “long chain” here means the traffic needs

118

to travel many router hops to reach its final destinations. The goal of this script is to test the RT'T and

throughput in relation to the number of hops and streams. This script takes the following parameters:

e ——ases The number of autonomous systems to generate. Each autonomous system can have 1
to 254 routers (numbers specified by --hops) and two hosts. The first host will send 1,000 ping
packets to the second host. The ping program is set to wait only 10 ms between each ICMP echo
packet. The first host will also run two iperf3 rounds with the second host. The first round is to

test the TX speed, and the second round is to test the RX speed. Both rounds use TCP.

e —-hops The number of hops, in each of the generated autonomous systems, to generate in between

the two test hosts. The two hosts are configured to use a default TTL value of 255.

Listing 80 shows the code for the “long chain” generator.

Listing 80: Emulation generator: Large numbers of hops and/or streams

#!/usr/bin/env python3

from seedemu import *
from typing import List
import argparse

TEST_SCRIPT = '''\
#!/bin/bash

wait for b to go online (mostly waiting for routing convergence).
while ! ping -t255 -c10 {remote}; do sleep 1; done

ping -c1000 -i.01 {remote} > /ping.txt
while ! iperf3 -c {remote} -t 60 > /iperf-tx.txt; do sleep 1; done
while ! iperf3 -Rc {remote} -t 60 > /iperf-rx.txt; do sleep 1; done

touch /done

(N}

def createEmulation(asCount: int, chainLength: int) -> Emulator:
assert chainLength < 254, 'chain too long.'
emu = Emulator ()
emu.addLayer (Routing())
emu.addLayer (Ibgp())
emu.addLayer (0spf ())

base = Base()
emu.addLayer (base)

for asnOffset in range(0, asCount):
asn = 150 + asnOffset

asObject = base.createAutonomousSystem(asn)

nets: List[Network] = []
lastNetName: str = None

for netId in range(0, chainLength):
netName = 'net{}'.format(netId)

net = asObject.createNetwork(netName)

119

nets.append (net)

if lastNetName != None:

thisRouter = asObject.createRouter('router{}'.format(netId))

thisRouter. joinNetwork (netName)
thisRouter. joinNetwork(lastNetName)

lastNetName = netName

hostA = asObject.createHost('a')
hostB = asObject.createHost('b')
netA = nets[0]
netB = nets[-1]
addressA = netA.getPrefix() [100]

addressB = netB.getPrefix() [100]

hostA

.joinNetwork (nets[0] .getName(), addressA)
hostB.

hostA.

hostB

joinNetwork (nets[-1] .getName(), addressB)

addSoftware('iperf3')

.addSoftware('iperf3"')

hostA.
hostB.

hostB

appendStartCommand ('sysctl -w net.ipv4.ip_default_ttl=255")
appendStartCommand('sysctl -w net.ipv4.ip_default_ttl=255"')

.appendStartCommand('iperf3 -s -D')

hostA.
hostA.

hostA

def main():

setFile('/test', TEST_SCRIPT.format(remote = addressB))
appendStartCommand ('chmod +x /test')

.appendStartCommand ('/test', True)

return emu

parser = argparse.ArgumentParser (description='Make an emulation with a ASes that has long
hops and run ping and iperf across hosts.')

parser.add_argument ('--ases', help = 'Number of ASes to generate.', required = True)
parser.add_argument ('--hops', help = 'Number of hops between two hosts.', required = True)
parser.add_argument ('--outdir', help = 'Output directory.', required = True)

args = parser.parse_args()

emu = createEmulation(int(args.ases), int(args.hops))

emu.render ()
emu. compile (Docker (selfManagedNetwork = True), args.outdir)

if __name__ == '__main__"':

main()

For example, to generate two autonomous systems, each with 100 hops between the hosts, one may

use:

./generator-2.py --ases 2 --hops 100 --outdir ./out

The emulation can again be started using the docker-compose up command. The results of ping

(/ping.txt) and iperf3 (/iperf-tx.txt and /iperf-tx.txt) are available under the root folder of

120

the first host node. Another file, /done, will be created when all the tests finishes. When the /done file

is available, it is safe to collect the files from containers.

Automating the tests and collecting metrics Similar to the last generator, a script for automating
the test and metric collection is created.

The driver script takes the following environment variables:

TARGET The test target. Can be either ases or hops. For the ases test, the number of hops is

fixed to ten. For the hops test, the number of ases is fixed to one.

START: Number of targets to start the test from.

e END: Number targets to end the test at.

STEP: Number of increments in the number of targets in each step.

Listing 81 shows the code for the “long chain” driver.

Listing 81: Driver: Large numbers of hops and/or streams
#!/bin/bash

set -e

cd "“dirname "$0" "

results=""pwd /results"

for ((i=${START}; i<=${END}; i+=${STEP})); do {
rm -rf out

echo "generating emulation..."
["$TARGET" = "ases"] && ./generator-2.py --ases $i --hops 10 --outdir out
["$TARGET" = "hops"] && ./generator-2.py --ases 1 —--hops $i --outdir out

this_results="$results/bench-$i-fwd-$TARGET"

[' -d "$this_results"] && mkdir "$this_results"
pushd out

echo "buliding emulation..."

docker-compose build

bugged? stuck forever at "compose.parallel.feed_queue: Pending: set()"...
docker-compose up -d

start only 10 at a time to prevent hangs

echo "start emulation..."

1s | grep -Ev '.yml$| dummies$' | xargs -nl0 -exec docker-compose up -d

echo "wait for tests..."
sleep 500

host_ids=""docker ps | egrep "hnode_.*_a" | cut -d\ -f1°"
for id in $host_ids; do {
while ! docker exec $id 1ls /dome; do {
echo "waiting for $id to finish tests..."
sleep 10
}; done

121

echo "collecting results from $id..."

docker cp "$id:/ping.txt" "$this_results/$id-ping.txt"

docker cp "$id:/iperf-tx.txt" "$this_results/$id-iperf-tx.txt"

docker cp "$id:/iperf-rx.txt" "$this_results/$id-iperf-rx.txt"
}; dome

docker-compose down

popd
}; done

This script also uses the trick in listing 77 to start only ten containers at a time.

For example, to benchmark forwarding for 10 to 100 routers hops, one may do:

START=10 END=100 STEP=10 TARGET=hops ./driver-2.sh

The driver script will, again, invoke the generator script, create and start the emulation and wait
for 500 seconds®. It then starts collecting the output files from the containers and copy them to the

results directory:

e ./results/bench-$i-$TARGET/$id-iperf-tx.txt
e ./results/bench-$i-$TARGET/$id-iperf-rx.txt

e ./results/bench-$i-$TARGET/$id-ping. txt

...where $i is the number of targets (a number between 10 and 100, in this case), $TARGET is the
test target (hops, in this case), and $id is the ID of the container. Once the output of ping and iperf3
are collected, the driver script will stop the emulation, and do the test again with more targets. This is

repeated until the END is reached.

Processing the raw metrics Again, a script to generate the CSV report from the results is also

included. Listing 82 shows the source for the script.
Listing 82: Summary script: Large numbers of hops and/or streams
#!/bin/bash
rsltdir="results/bench-*-$1"
echo "$1,rx_mbps,tx_mbps,retr,ping"

for report in $rsltdir; do {
head=""sed -n 's/.*bench-\([0-9]*\)-.*/\1/p' <<< "$report" "

rx=""cat "$report/"*-iperf-rx.txt | grep receiver | awk '{print $7 * ($8 == "Gbits/sec" 7
"1000" : "1")}' | awk '{ sum += $1 } END{ print sum }'""

tx=""cat "$report/"*-iperf-tx.txt | grep sender | awk '{print $7 * ($8 == "Gbits/sec" 7
"1000" : "1")}' | awk '{ sum += $1 } END{ print sum }'""

retr=""cat "$report/"*-iperf-tx.txt | grep sender | awk '{print $9}' | awk '{ sum += $1 }
END { if (NR > 0) printf "J%.0f", sum / NR }'™"

5200 seconds added to allow the tests to finish, but even if the tests did not complete in time, the script will check for
the /done flag file and only start pulling result files after it sees the done flag file.

122

ping=""cat "$report/"*-ping.txt | grep min/avg/max/mdev | cut -d/ -f5 | awk '{ sum += $1 }
END { if (NR > 0) printf "%.10f", sum / NR }' ™"

echo "$head, $rx,$tx,$retr,$ping"
}; done | sort -nt, -ki

This script sums the averages of TX and RX speeds from all host nodes. It also saves the average
ping and TCP retransmission. It again, take one parameter, the affix of the test. The output looks like

this:

Listing 83: Summary script: example output

$./mkreport-rtt-and-speed hops
hops,rx_mbps,tx_mbps,retr,ping
10,7550,7660,15,0.2220000000
20,3170,3200,32,0.5140000000
30,1680,1670,65,0.8120000000

11.2 Complete code used in case studies

Listing 84: Full code for the simple BGP setup example

#1/usr/bin/env python3

encoding: utf—8

from seedemu.layers import Base, Routing, Ebgp
from seedemu.services import WebService
from seedemu.compiler import Docker

from seedemu.core import Emulator, Binding, Filter

Initialize the emulator and layers
emu = Emulator()

base = Base()

routing = Routing()

ebgp = Ebgp()

web = WebService()

Create an Internet Exchange

base.createlnternetExchange(100)
Create and set up AS—150

Create an autonomous system

as1l50 = base.createAutonomousSystem(150)

Create a network

as150.createNetwork('net0')

Create a router and connect it to two networks

as150.createRouter('router0').joinNetwork('net0").joinNetwork('ix100")

Create a host called web and connect it to a network

as150.createHost('web').joinNetwork('net0')
Create a web service on virtual node, give it a name
This will install the web service on this virtual node

web.install('web150")

Bind the virtual node to a physical node

emu.addBinding(Binding('web150', filter = Filter(nodeName = 'web', asn = 150)))

123

HAHHAHH HAHHAFHHAHHHAHH

H A HHHHFEHH T A A HAHHHHHAHHFH HAHHH A
Create and set up AS—151

It is similar to what is done to AS—150

asl51 = base.createAutonomousSystem(151)
asl5l.createNetwork('net0")

asl51.createRouter('router0').joinNetwork('net0").joinNetwork('ix100")

asl51l.createHost('web').joinNetwork('net0")
web.install('web151')

emu.addBinding(Binding('web151', filter = Filter(nodeName = 'web', asn = 151)))

HHHBRHH BB B BR BB BH RSB RARH R R BB RSB RARARAR AR AR AR AR YRR ABR AR BR BB AH

Create and set up AS—152

It is similar to what is done to AS—150

as152 = base.createAutonomousSystem(152)
as152.createNetwork('net0')

as152.createRouter('router0').joinNetwork('net0').joinNetwork('ix100")

as152.createHost('web').joinNetwork('net0')
web.install('web152")
emu.addBinding(Binding('web152', filter = Filter(nodeName = 'web', asn = 152)))

HHAHHHH ## HAHHH A HAHHH A # H#AH ## HAHHH A
Peering these ASes at Internet Exchange IX—100

ebgp.addRsPeer (100, 150)
ebgp.addRsPeer (100, 151)
ebgp.addRsPeer (100, 152)

HAHHAHH # HAHHAHH #H 7

HHRHHHHBHHBHHHHHHHHHHHHHHH R YRR R B R BB R R R HHHHHBHHHRHHHHH R R YR RS AR R R R R RS HHHHHHHHHHHHH

Rendering

emu.addLayer(base)
emu.addLayer(routing)
emu.addLayer(ebgp)

emu.addLayer(web)

emu.render()

H#HH# # # HAHH A # HHHH A

Compilation

emu.compile(Docker(), './output')

HAHHH # H#HH#

Listing 85: Full code for the simple transit setup example

#!/usr/bin/env python3

encoding: utf—8

from seedemu.layers import Base, Routing, Ebgp, PeerRelationship, Ibgp, Ospf
from seedemu.services import WebService
from seedemu.core import Emulator, Binding, Filter

from seedemu.compiler import Docker
emu = Emulator()

base = Base()
routing = Routing()
ebgp = Ebgp()

ibgp = Ibgp()

ospf = Ospf()

web = WebService()

124

#H#

base.createInternetExchange(100)

base.createInternetExchange(101)

H#HH#

HHURHHHHHHHBHHHHHHHHHHHHHHHH W R R R B R R R R BB HHHHHBHHHRHHHHHHH N R B R R R R HHHHHHHHHHHHHHHHHH

Create and set up the transit AS (AS—150)

as150 = base.createAutonomousSystem(150)

Create 3 internal networks
as150.createNetwork('net0')
as150.createNetwork('netl')

as150.createNetwork('net2')

Create four routers and link them in a linear structure:

ix100 <——>r1l <——>12 <——> 138 <——>rd <——> ix101

rl and r2 are BGP routers because they are connected to Internet exchanges
as150.createRouter('r1').joinNetwork('net0').joinNetwork('ix100')
as150.createRouter('r2').joinNetwork('net0').joinNetwork('net1')
as150.createRouter('r3').joinNetwork('netl').joinNetwork('net2')

as150.createRouter('r4').joinNetwork('net2').joinNetwork('ix101")

#HH#

Create and set up the stub AS (AS—151)
asl51 = base.createAutonomousSystem(151)
Create an internal network and a router
asl51.createNetwork('net0')

asl51l.createRouter('router0').joinNetwork('net0").joinNetwork('ix100")

Create a web—service node

as151.createHost('web').joinNetwork('net0')

web.install('web151")

emu.addBinding(Binding('web151', filter = Filter(nodeName = 'web', asn = 151)))

H#HH#

BHBHBHHRABBRRABRRRBBRRRBBRRRBBRRABRRR BB RRRABBRRHBRRRABRRRABRRRABRRABBRRABBRRA RS

Create and set up the stub AS (AS—152)
as152 = base.createAutonomousSystem(152)
asl52.createNetwork('net0')

as152.createRouter('router0').joinNetwork('net0').joinNetwork('ix101')

as1l52_web = asl52.createHost('web').joinNetwork('net0")

web.install('web152")

emu.addBinding(Binding('web152', filter

Filter(nodeName

'web', asn = 152)))

#H#

Add BGP peering

Make AS—150 the Internet service provider for AS—151 and AS—152
ebgp.addPrivatePeering(100, 150, 151, abRelationship =

ebgp.addPrivatePeering(101, 150, 152, abRelationship

PeerRelationship.Provider)

PeerRelationship.Provider)

H#HH#

HHRHHHHRHHHHHHHHHHHHHHHHHHH YRR R R R R R R R R HHHHHBHH BB HHHHHH B R R R R R R R R R RS HHHHHHHHHHHHH

emu.

emu

emu

emu.

emu.

emu.

##

addLayer(base)

.addLayer(routing)
.addLayer(ebgp)

addLayer (ibgp)
addLayer (ospf)
addLayer(web)

Save the emulation as a component (can be reused by other emulation)

125

#H#

emu.dump('base—component.bin')

FEHHHFHHHHHHFHHATHHFHFHHFHHFHHHFHHATH AR

Generate the docker file

emu.render()

emu.compile(Docker(), './output')

Listing 86: Full code for the simple MPLS transit setup example

#!/usr/bin/env python3

encoding: utf—8

from seedemu.layers import Base, Routing, Ebgp, PeerRelationship, Mpls

from seedemu.services import WebService
from seedemu.core import Emulator, Binding, Filter

from seedemu.compiler import Docker

emu = Emulator()

base = Base()
routing = Routing()
ebgp = Ebgp()
mpls = Mpls()
web = WebService()

##

HAHHAHH

HAHHAHH

base.createInternetExchange(100)

base.createlnternetExchange(101)

HHHHHHH HHHHH HHHHH
Create and set up the transit AS (AS—150)

as150 = base.createAutonomousSystem(150)

Create 3 internal networks
as150.createNetwork('net0')
as150.createNetwork('netl')

as150.createNetwork('net2')

Create four routers and link them in a linear structure:

ix100 <——>11 <——>12 <——> 13 <——> rd <——> ix101

rl and r2 are BGP routers because they are connected to Internet exchanges

as150.createRouter('r1').joinNetwork('net0').joinNetwork('ix100")
as150.createRouter('r2').joinNetwork('net0').joinNetwork('net1')
as150.createRouter('r3').joinNetwork('netl').joinNetwork('net2')

as150.createRouter('r4').joinNetwork('net2').joinNetwork('ix101")

Enable MPLS
mpls.enableOn(150)

HAHH A

HAHHH

HHHH A

HAHHAFHHAHHHAHH

#H#

H#HH#

HHHRHA R BB BRI B BHHR BB BH RSB RA R BB RARARARARAR AR AR AR AR AR ABRABRBR BB AH

Create and set up the stub AS (AS—151)

asl51 = base.createAutonomousSystem(151)

Create an internal network and a router

asl5l.createNetwork('net0")

as151.createRouter('router0').joinNetwork('net0').joinNetwork('ix100')

Create a web—service node
asl5l.createHost('web').joinNetwork('net0')

web.install('web151")

emu.addBinding(Binding('web151', filter = Filter(nodeName = 'web', asn = 151)))

FEHHHFEHH A HHFEHH AT HHFHH W HFHHHTHH AU HFHHHTHH A HHFHH AT HFFH AW HFHHATHHAFHHAHHH

Create and set up the stub AS (AS—152)

asl52 = base.createAutonomousSystem(152)
as152.createNetwork('net0')

asl52.createRouter('router0').joinNetwork('net0").joinNetwork('ix101")

asl52_web = asl52.createHost('web').joinNetwork('net0")
web.install('web152")
emu.addBinding(Binding('web152', filter = Filter(nodeName = 'web', asn = 152)))

#H#
Make AS—150 the Internet service provider for AS—151 and AS—152

ebgp.addPrivatePeering(100, 150, 151, abRelationship = PeerRelationship.Provider)

ebgp.addPrivatePeering(101, 150, 152, abRelationship = PeerRelationship.Provider)

FEHH A FEHH AT H AT H A TH AT H AT AT H AT T AT AT AT AT AT AT AT

emu.addLayer(base)
emu.addLayer(routing)
emu.addLayer(ebgp)
emu.addLayer(mpls)

emu.addLayer(web)

emu.render()

#H# # # # # # H#HH#

emu.compile(Docker(), './output')

Listing 87: Full code for the real-world example

#1/usr/bin/env python3

encoding: utf—8

from seedemu.layers import Base, Routing, Ebgp, PeerRelationship, Ibgp, Ospf
from seedemu.services import WebService

from seedemu.core import Emulator, Binding, Filter

from seedemu.raps import OpenVpnRemoteAccessProvider

from seedemu.compiler import Docker

emu = Emulator()
base = Base()

routing = Routing()

ebgp = Ebgp()

ibgp = Ibgp()

ospf = Ospf()

web = WebService()

ovpn = OpenVpnRemoteAccessProvider()

BHBHBHHRHBBRRABRRRBBRRRBBRRRBBRRABBRR BB RRRABBRRHBBRRABBRRABBRBRABRRABBRRABBRRA RS

base.createlnternetExchange(100)

base.createInternetExchange(101)

##
Create a transit AS (AS—150)

as150 = base.createAutonomousSystem(150)

as150.createNetwork('net0")
as150.createNetwork('netl')

as150.createNetwork('net2')

Create 4 routers: rl and r4 are BGP routers (connected to Internet exchange)
as150.createRouter('r1').joinNetwork('ix100").joinNetwork('net0")
as150.createRouter('r2').joinNetwork('net0').joinNetwork('net1')

as150.createRouter('r3').joinNetwork('netl').joinNetwork('net2')

127

as150.createRouter('r4').joinNetwork('net2').joinNetwork('ix101")

#H#
Create AS—151

asl51 = base.createAutonomousSystem(151)

Create a network and enable the access from real world
asl5l.createNetwork('net0').enableRemoteAccess(ovpn)

asl51l.createRouter('router0').joinNetwork('net0").joinNetwork('ix100")

Create a web host
asl5l.createHost('web').joinNetwork('net0')
web.install('web1")

emu.addBinding(Binding('web1', filter = Filter(asn = 151, nodeName = 'web')))

#HH#

HA#HHHH # HAHHHHH HA#HHHH H## H#HH#HH# # HAHHHHH
Create AS—152

as152 = base.createAutonomousSystem(152)

Create a network and enable the access from real world
as152.createNetwork('net0').enableRemoteAccess(ovpn)

as152.createRouter('router0').joinNetwork('net0").joinNetwork('ix101")

Create a web host
as152.createHost('web').joinNetwork('net0')
web.install('web2")

emu.addBinding(Binding('web2', filter = Filter(asn = 152, nodeName = 'web')))

HHHHH#HH

H#H#

HHHHH#HH

HHHH

BHAHBHHRABBRRHBBRRRBBRRRBBRRRBBRR AR RRR BB RRRABBRRHBRRRABRRRABRBRABRRABBRRABBRRA RS

Create a real—world AS.
AS11872 is the Syracuse University's autonomous system
The network prefixes announced by this AS will be collected from the real Internet

Packets coming into this AS will be routed out to the real world.

as11872 = base.createAutonomousSystem (11872)

as11872.createRealWorldRouter('rw').joinNetwork('ix101', '10.101.0.118")

HAH#HHHH # HAAHHHH HAH#HHHH ## H#HH#H# # HA#HHHH
BGP peering

ebgp.addPrivatePeering(100, 150, 151, abRelationship = PeerRelationship.Provider)

ebgp.addPrivatePeering(101, 150, 152, abRelationship = PeerRelationship.Provider)
ebgp.addPrivatePeering(101, 150, 11872, abRelationship = PeerRelationship.Unfiltered)

#H#

HHHHH#HH

#H#

HA#HHHH

HHHH

Rendering

emu.addLayer(base)
emu.addLayer (routing)
emu.addLayer(ebgp)

em

e

.addLayer(ibgp)
emu.addLayer (ospf)

emu.addLayer(web)

emu.render()

H#HH#

i

Compilation

emu.compile(Docker(), './output')

128

#H#

Listing 88: Full code for the complex BGP setup example

#!/usr/bin/env python3

encoding: utf—8

from seedemu import *

H##
emu = Emulator()
base = Base()

routing = Routing()

ebgp = Ebgp()

ibgp = Ibgp()

ospf = Ospf()

web = WebService()

ovpn = OpenVpnRemoteAccessProvider()
H#H

ix100 = base.createInternetExchange(100)
ix101 = base.createlnternetExchange(101)
ix102 = base.createlnternetExchange(102)
ix103 = base.createInternetExchange(103)
ix104 = base.createInternetExchange(104)
ix105 = base.createInternetExchange(105)

Customize names (for visualization purpose)
ix100.getPeeringLan().setDisplayName('NYC—100")
ix101.getPeeringLan().setDisplayName('San Jose—101')
ix102.getPeeringLan().setDisplayName('Chicago—102")
ix103.getPeeringLan().setDisplayName (' Miami—103')
ix104.getPeeringLan().setDisplayName('Boston—104")

ix105.getPeeringLan().setDisplayName('Huston—105')

H#HH#

##

BUUBHHBHBHBBR BB R BB R BB BB R BB BBR BB R BB BHBR BB R BHR BB BB BHRBH BB RBH BB BB RBH BB BHRY

Create Transit Autonomous Systems

#4# Tier 1 ASes
Makers.makeTransitAs(base, 2, [100, 101, 102, 105],
[(100, 101), (101, 102), (100, 105)]

Makers.makeTransitAs(base, 3, [100, 103, 104, 105],
[(100, 103), (100, 105), (103, 105), (103, 104)]

Makers.makeTransitAs(base, 4, [100, 102, 104],
[(100, 104), (102, 104)]

#+4 Tier 2 ASes
Makers.makeTransitAs(base, 11, [102, 105], [(102, 105)])
Makers.makeTransitAs(base, 12, [101, 104], [(101, 104)])

FEHHHFHH A HHFEHHFTHHFHH AW HTHHFTHH AU HFHHHTHH A HHFHH AT HHFFH AW HFHHATHH AR

Create single—homed stub ASes. ”None” means create a host only

Makers.makeStubAs(emu, base, 150, 100, [web, None])

Makers.makeStubAs(emu, base, 151, 100, [web, None])

Makers.makeStubAs(emu, base, 152, 101, [None, None])

Makers.makeStubAs(emu, base, 153, 101, [web, None, None])

Makers.makeStubAs(emu, base, 154, 102, [None, web])

Makers.makeStubAs(emu, base, 160, 103, [web, None])
Makers.makeStubAs(emu, base, 161, 103, [web, None])

Makers.makeStubAs(emu, base, 162, 103, [web, None])

129

Makers.makeStubAs(emu, base, 163, 104, [web, None])

Makers.makeStubAs(emu, base, 164, 104, [None, None])

Makers.makeStubAs(emu, base, 170, 105, [web, None])
Makers.makeStubAs(emu, base, 171, 105, [None])

Add a host with customized IP address to AS—154
asl54 = base.getAutonomousSystem(154)

asl54.createHost('host_2").joinNetwork('net0', address = '10.154.0.129")

Create real—world AS.

AS11872 is the Syracuse University's autonomous system
g b/ by

as11872 = base.createAutonomousSystem(11872)
as11872.createRealWorldRouter('rw').joinNetwork('ix102', '10.102.0.118")

Allow outside computer to VPN into AS—152's network
asl52 = base.getAutonomousSystem(152)

as152.getNetwork('net0').enableRemoteAccess(ovpn)

#HH# # # HAHHH # HHAHHH
Peering via RS (route server). The default peering mode for RS is PeerRelationship.Peer,
which means each AS will only export its customers and their own prefixes.

We will use this peering relationship to peer all the ASes in an IX.

None of them will provide transit service for others.

ebgp.addRsPeers(100, [2, 3, 4])
ebgp.addRsPeers(102, [2, 4])
ebgp.addRsPeers(104, [3, 4])
ebgp.addRsPeers(105, [2, 3])

To buy transit services from another autonomous system,

we will use private peering

ebgp.addPrivatePeerings(100, [2], [150, 151], PeerRelationship.Provider)

ebgp.addPrivatePeerings(100, [3], [150], PeerRelationship.Provider)

ebgp.addPrivatePeerings(101, [2], [12], PeerRelationship.Provider)
ebgp.addPrivatePeerings(101, [12], [152, 153], PeerRelationship.Provider)

ebgp.addPrivatePeerings(102, [2, 4], [11, 154], PeerRelationship.Provider)
ebgp.addPrivatePeerings (102, [11], [154, 11872], PeerRelationship.Provider)

ebgp.addPrivatePeerings(103, [3], [160, 161, 162], PeerRelationship.Provider)
ebgp.addPrivatePeerings(104, [3, 4], [12], PeerRelationship.Provider)
ebgp.addPrivatePeerings(104, [4], [163], PeerRelationship.Provider)
ebgp.addPrivatePeerings(104, [12], [164], PeerRelationship.Provider)
ebgp.addPrivatePeerings(105, [3], [11, 170], PeerRelationship.Provider)

ebgp.addPrivatePeerings(105, [11], [171], PeerRelationship.Provider)

#H#

Add layers to the emulator
emu.addLayer(base)
emu.addLayer(routing)
emu.addLayer(ebgp)
emu.addLayer(ibgp)
emu.addLayer (ospf)

emu.addLayer(web)

Save it to a component file, so it can be used by other emulators

emu.dump('base—component.bin')

130

H#HH#

#HH#

Uncomment the following if you want to generate the final emulation files
emu.render()

emu.compile(Docker(), './output')

Listing 89: Full code for DNS infrastructure setup

#1/usr/bin/env python3

encoding: utf—8

from seedemu.core import Emulator

from seedemu.services import DomainNameService

emu = Emulator()

#H# # # # # #
Create a DNS layer

dns = DomainNameService()

Create two nameservers for the root zone
dns.install('a—root—server').addZone('.").setMaster() # Master server

dns.install('b—root—server').addZone('.") # Slave server

Create nameservers for TLD and ccTLD zones
dns.install('a—com—server').addZone('com.").setMaster()
dns.install('b—com —server').addZone('com.")
dns.install('a—net—server').addZone('net.")
dns.install('a—edu—server').addZone('edu.")
dns.install('a—cn—server').addZone('cn.').setMaster()

dns.install('b—cn—server').addZone('cn.")

Create nameservers for second—level zones
dns.install('ns—twitter—com').addZone('twitter.com.")
dns.install('ns—google—com').addZone('google.com.")
dns.install('ns—example—net').addZone('example.net.")
dns.install('ns—syr—edu').addZone('syr.edu.")

dns.install('ns—weibo—cn').addZone('weibo.cn.")

Add records to zones
dns.getZone('twitter.com.').addRecord('@ A 1.1.1.1")
dns.getZone('google.com.').addRecord('@ A 2.2.2.2')
dns.getZone('example.net.').addRecord('@ A 3.3.3.3")
dns.getZone('syr.edu.').addRecord('@ A 128.230.18.63')
dns.getZone('weibo.cn.').addRecord('@ A 5.5.5.5').addRecord('www A 5.5.5.6')

BUABHHBHBHBBRBHBR BB R BBRBBR BB A BBHBBR BB A BB R BBR BB R BB R BB BB A B HBH
emu.addLayer(dns)

emu.dump('dns—component.bin')

Listing 90: Full code for deploying DNS on complex BGP

#1/usr/bin/env python3

encoding: utf—8

from seedemu.core import Emulator, Binding, Filter, Action
from seedemu.mergers import DEFAULT_MERGERS

from seedemu.compiler import Docker

from seedemu.services import DomainNameCachingService

from seedemu.layers import Base

emuA = Emulator()

emuB = Emulator()

Load the pre—built components and merge them
emuA.load('../B00—mini—internet/base—component.bin')
emuB.load('../B01—dns—component,/dns—component.bin')

emu = emuA.merge(emuB, DEFAULT-MERGERS)

131

#H#

Bind the virtual nodes in the DNS infrastructure layer to physical nodes.
Action.FIRST will look for the first acceptable node that satisfies the filter rule.

There are several other filters types that are not shown in this example.

bind root servers randomly in AS171

emu.addBinding(Binding('.x—root—server', filter=Filter(asn=171)))

bind com servers randomly in AS151, net on 152, edu on 153, and cn on 154
emu.addBinding(Binding('.» —com —server', filter=Filter(asn=151)))
emu.addBinding(Binding('.+ —net—server', filter=Filter(asn=152)))
emu.addBinding(Binding('.» —edu—server', filter=Filter(asn=153)))

emu.addBinding(Binding('.x—cn—server', filter=Filter(asn=154)))

for the domain servers, bind them randomly in any AS

emu.addBinding(Binding('ns—.x'))

HA#HHHH # HAHHHHH HA#HHHH H## H#HH#HH# # HAHHHHH
Create two local DNS servers (virtual node).

ldns = DomainNameCachingService()

ldns.install('global—dns—1')

ldns.install('global—dns—2'")

Create two new host in AS—152 and AS—153, use them to host the local DNS server.

We can also host it on an existing node.

HHHFHHH

emu.addBinding(Binding('global—dns—1', filter = Filter(ip = '10.152.0.53')), action = Action.NEW)

emu.addBinding(Binding('global —dns—2', filter = Filter(ip = '10.153.0.53")), action = Action.NEW)

Add 10.152.0.53 as the local DNS server for AS—160 and AS—170
Add 10.153.0.53 as the local DNS server for all the other nodes
We can also set this for individual nodes

base: Base = emu.getLayer('Base')

base.get AutonomousSystem (160).setNameServers(['10.152.0.53'])
base.get AutonomousSystem(170).setNameServers(['10.152.0.53'])
base.setNameServers(['10.153.0.53'])

Add the ldns layer

emu.addLayer(ldns)

Dump to a file

emu.dump('base_with_dns.bin'")

H#HH# # # HAHH A # #
Render the emulation and further customization

emu.render()

H#H# #

Render the emulation

emu.compile(Docker(), './output')

Listing 91: Full code for the anycast setup

#!/usr/bin/env python3

encoding: utf—8

from seedemu.core import Emulator

from seedemu.compiler import Docker

from seedemu.layers import Base, Ebgp, PeerRelationship
emu = Emulator()

Load the pre—built component

emu.load('../B00—mini—internet/base—component.bin')

base: Base = emu.getLayer('Base")

132

133

References

Team nsnam, “ns-3 Network Simulator,” ns-3 Homepage, https://www.nsnam.org.

J. Ahrenholz, C. Danilov, T. R. Henderson and J. H. Kim, “CORE: A real-time network emulator,”
2008 IEEE Military Commaunications Conference pp. 1-7, DOI 10.1109/MILCOM.2008.4753614,
2008.

CMU Software Engineering Institute, “GreyBox,” CMU Digital Library, https://github.com/cmu-

sei/greybox.

EVE-NG Team, “EVE-NG - The Emulated Virtual Environment For Network, Security and DevOps

Professionals”, EVE-NG Homepage, https://www.eve-ng.net.

SolarWinds, “GNS3: The software that empowers network professionals,” GNS8 Homepage,

https://www.gns3.com.

Holterbach T., Biihler T., Rellstab T., Vanbever L., “An Open Platform to Teach How
the Internet Practically Works,” SIGCOMM Comput. Commun. Rev. 50 pp. 45-52, DOI
10.1145/3402413.3402420, 2020.

Docker Project, “Docker,” Docker Homepage, https://www.docker.com.
YAML Project, “YAML: YAML Ain’t Markup Language™” YAML Homepage, https://yaml.org.

Ondiej F., Martin M., Ondfiej Z., Jan M., Libor F., and Pavel M., “BIRD: The BIRD Internet

Routing Daemon,” BIRD Homepage, https://bird.network.cz.

FRRouting Project, “FRRouting: a free and open source Internet routing protocol suite for Linux

and Unix platforms,” FRRouting Homepage, https://frrouting.org.

Internet Systems Consortium, “BIND 9: Versatile, classic, complete name server software,” BIND

9 Homepage, https://www.isc.org/bind/.

BYOB Project contributors, “byob: An open-source post-exploitation framework for students, re-

searchers and developers,” Github Repository, https://github.com/malwaredllc/byob.

Bird-1g-go project contributors, “Bird-lg-go: An alternative implementation for bird-lg written in

Go,” emphGithub Repository, https://github.com/xddxdd/bird-lg-go.

Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., “A Border Gateway Protocol 4 (BGP-4),” RFC
4271, DOI 10.17487/RFC4271, January 2006, https://www.rfc-editor.org/info/rfc4271.

Chandra, R., Traina, P., and T. Li, “BGP Communities Attribute,” RFC 1997, DOI
10.17487/RFC1997, August 1996, https://www.rfc-editor.org/info/rfc1997.

134

[16]

[22]

[23]

[24]

[26]

Heitz, J., Ed., Snijders, J., Ed., Patel, K., Bagdonas, I., and N. Hilliard, “BGP Large
Communities Attribute,” RFC 8092, DOI 10.17487/RFC8092, February 2017, https://www.rfc-
editor.org/info/rfc8092.

Vohra, Q. and E. Chen, “BGP Support for Four-Octet Autonomous System (AS) Number Space,”
RFC 6793, DOI 10.17487/RFC6793, December 2012, https://www.rfc-editor.org/info/rfc6793.

Enke C., Tony B., and Ravi C., “BGP Route Reflection: An Alternative to Full Mesh Internal BGP
(IBGP),” RFC 4456, DOI 10.17487/RFC4456, April 2006, https://www.rfc-editor.org/info/rfc4456.

Moy, J., “OSPF Version 2,” STD 54, RFC 2528, DOI 10.17487/RFC2328, April 1998,
https://www.rfc-editor.org/info/rfc2328.

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, “DNS Security Introduc-
tion and Requirements,” RFC 4033, DOI 10.17487/RFC4033, March 2005, https://www.rfc-
editor.org/info/rfc4033.

Rosen, E., Viswanathan, A., and R. Callon, “Multiprotocol Label Switching Architecture,” RFC

3031, DOI 10.17487/RFC3031, January 2001, https://www.rfc-editor.org/info/rfc3031.

Andersson, L., Ed., Minei, 1., Ed., and B. Thomas, Ed., “LDP Specification,” RFC 5036, DOI

10.17487/RFC5036, October 2007, https://www.rfc-editor.org/info/rfc5036.

H. Eidnes, G. de Groot, and P. Vixie, “Classless IN-ADDR.ARPA delegation,” RFC 2317, DOI
10.17487/RFC2317, March 1998, https://www.rfc-editor.org/info/rfc2317.

Lepinski, M. and S. Kent, “An Infrastructure to Support Secure Internet Routing,” RFC 6480, DOI

10.17487/RFC6480, February 2012, https://www.rfc-editor.org/info/rfc6480.

A. M Potdar, Narayan, Shivaraj K., and Mohammed M., “Performance Evaluation of Docker Con-
tainer and Virtual Machine,” Procedia Computer Science, Volume 171 pp 1419-1428, ISSN 1877-

0509, DOT 10.1016/j.procs.2020.04.152, 2020.

R. Morabito, “A Performance Evaluation of Container Technologies on Internet of Things De-
vices,” 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS,
DOI 10.1109/infcomw.2016.7562228, April 2016.

Bowden, T., Bauer, B., Nerin, J., Feng, S., and Seibold, S., “The /proc Filesystem,” Linuz Kernel

Documentation, June 2009, https://www.kernel.org/doc/Documentation/filesystems/proc.txt.

Linux, “Linux Kernel 1P sysctl,” Linux Kernel Documentation,

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

135

[29] Ebersman, P., Kumari, W., Griffiths, C., Livingood, J., and R. Weber, “Definition and Use
of DNSSEC Negative Trust Anchors,” RFC 7646, DOI 10.17487/RFC7646, September 2015,
https://www.rfc-editor.org/info/rfc7646.

136

Vita

Honghao Zeng

Education

e Master of Science in Computer Science, Syracuse University, Syracuse, New York, 2020 - present.

Thesis: “SEEDEMU: The SEED Internet Emulator” (this thesis).

e Bachelor of Science in Computer Science, Syracuse University, Syracuse, New York, 2016 - 2020.

Academic Employment

e Research Assistant, Syracuse University, Syracuse, New York, 2018 - present.

